

maritime & ports technology for intelligent decisions

our areas of excellence

www.tinamica.com

expertise

Artificial Intelligence Image Recognition

Training image set based on business requirements with image tagging tools for object detection

tinamica

Machine Learning Route analytics applied to price prediction Route Analysis based on positioning clusters and graphs

Big Data

Commercial & Financial Reporting

Reporting adapted to the need of each one with their business KPI's

Heuristic System Terminal Management

Intelligence management of terminals and b<u>ert</u>hs

references

maritime terminal information management

What?

- Berth Programing Optimization using AI
- Terminal and Berth in-time Reassignment
- Demurrage Prediction and Quantification
- Smart ETA Adjustments to avoid Demurrages
- Real Time Alert and Restriction Updates
- Analytical Based Process Reingeneering
- CO2-Equivalent Calculation

Ø

Objectives

- Terminal Management Digitalization
- Minimize vessel Demurrage at Terminal
- Service Downtime Management (planned and unplanned)
- Product Unavailability, Lab Tests and Weather Impact Reduction
- Reduce CO2 emissions

How?

- Multivariable Restriction Rule Based Expert System
- Smart Heuristic Analysis and Forecasting System
- Cost Function Minimization
- KPIs Analytical Reporting and Tracking
- Visual Scenarios Comparison Dashboards

www.tinamica.com

route analytics applied to port demand prediction

Objectives

- To predict port demand, for better schedulling future unloading and loading operations
- Understanding port and vessel operations and cluster them accordingly in order to model expected vessel availability
- To understand maritime flows and how ship owners operate.

What?

tinamica

- Development Time series model, by means of state-of-the-art python library for time series analysis.
- Development of next port prediction model. .
- Development of time of arrival prediction model.
- Building a probabilistic graph model, based on historical vessel trips around the world, to predict vessels positions.

How?

- Arrange data about ports, historical trips including its geolocalization.
- Exploratory Data Analysis about historical vessels trips
- Time series analysis about voyage duration among ports.
- Ports clustering analysis to group them according to unloading/loading operations.

commodity freight price forecast

What?

Arange ship geolocalization data and commodity price time series

Baltic Exchange will be determined by:

- Unbalances in the Demand over different Geographic Regions
- Product Prices on different hubs

Objectives

- Achieve a time series prediction of Baltic Exchange stock price
- Allow a commodity trading Front Office to hedge the price risk exposure

How?

PROPHET

Time series Forecasting Model: Predict weekly Baltic Exchange over several weeks

- Built on top of Route Analytics and Port Demand Mode
- Deploy model on Azure Cloud and deliver interpretable results in a comprehensive PowerBI dashboard

abnormal behavior detection

Abnormal Clip

https://towardsdatascience.com/prototyping-an-anomaly-detectionsystem-for-videos-step-by-step-using-lstm-convolutional-4e06b7dcdd29

Output Decode Hidden Encode Input

https://commons.wikimedia.org/wiki/File:Autoenc oder schema.png

What?

tinamica

- A deep neural network that combines convolutional (specialized in image understanding) and LSTM (able to extract patterns from sequences of frames) in a single layer
- This special layer is the foundation of an autoencoder architecture, that is SoA algorithm for unsupervised learning
- This model learns expected behavior from a sequence of frames and yields a "reconstruction cost" as a metric of annormality

How?

Objectives

video recording facilities

When this reconstruction cost is too high an unexpected sequence happened and a human may watch the recorded video

Detection of abnormal behavior on video sequences in

Reduce the amount of human watching-video time

- Deploy deep-neural netwok on Azure Cloud
- Prediction on Near Real Time that allow to significantly reduce human monitoring keeping cost on check

www.tinamica.com

