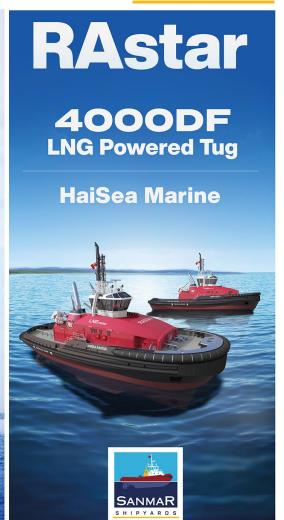

STEPPING INTO AN ALATERNATE & ELECTRIFYING AGE FOR TOWAGE

Seychelles Maritime Week – 24-26 September, 2024

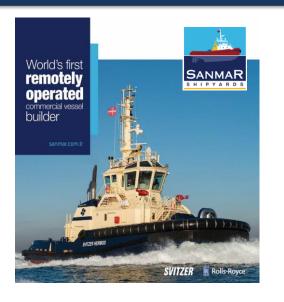
Drivers and Regulations for Decarbonisation

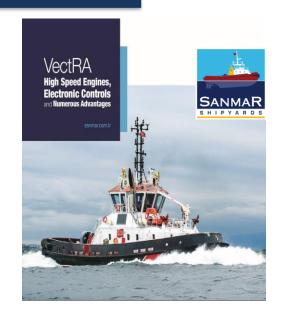
Outline of ambitions and minimum indicative checkpoints in the revised IMO GHG Strategy

In July 2023, the IMO completed the first revision of its greenhouse gas (GHG) strategy, significantly strengthening the ambitions for international shipping compared with the initial goal for a 50% GHG reduction by 2050. Taking 2008 as a baseline, the revised strategy now aims to reduce well-to-wake GHG emissions by 20% in 2030, by 70% in 2040, and to reach net-zero 'by or around' 2050.


Propulsion Alternatives for Tugs

- Diesel (ULSFO) with exhaust after-treatment (IMO Tier III)
- LNG (dual fuel or pure lean burn gas engines)
- Hydrogen / Ammonia / Methanol / Biomass fuels
- **Battery Electric**
- Others?




Leading the way with World firsts and ITS awarded tugs

sanmar.com.tr

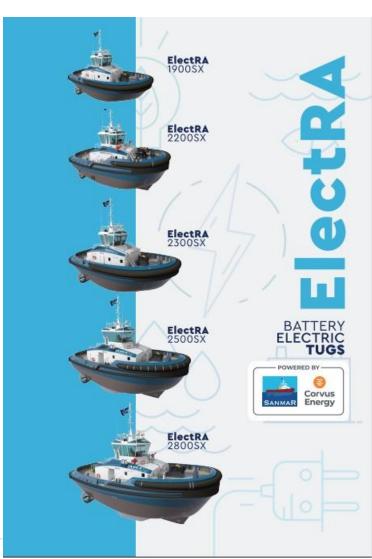
Breaking new ground – Methanol Fuelled (Escort) Tugs

SANMAR

- The RAsalvor 4400-DFM escort tugs (2) will measure 44 metres in length with over 115 tonnes of bollard pull. They'll be Canada's most powerful escort tugs to date and have been customized to meet the demanding operational and environmental requirements for this project.
- World's first large purpose-built high bollard pull methanol fuelled tugs when they enter service in 2025 and will provide significant environmental benefits to further reduce greenhouse gas (GHG) emissions and underwater radiated noise.
- Equipped with a mechanical cross link system between the azimuth thrusters to enable a single engine to drive both propellers. They will also be equipped with main engine driven shaft generators to satisfy the vessel's normal electrical needs. These features will allow the crews to optimize engine loading and significantly reduce fuel consumption and running hours of the main engines and gensets further reducing emissions.
- Additionally, KOTUG is having the hulls of both tugs coated with a graphene paint to reduce biofouling and enhance hull-smoothness which reduces underwater radiated noise and makes the vessels more fuel efficient.

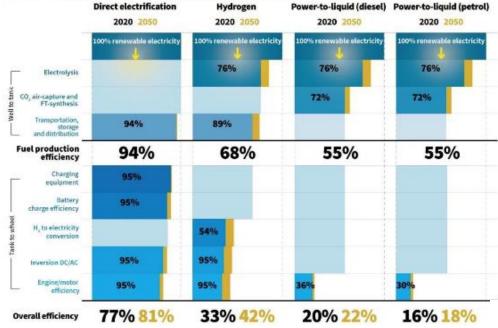
NB. Using conventional methanol as a marine fuel can **reduce SOx** and **particulate matter emissions** by more than **95%**, and **NO**× by up to **80%** compared to conventional marine fuels. Conventional methanol can reduce **CO₂ emissions** during combustion by up to **15** % compared to conventional fuels. The use of e-methanol and biomethanol can be carbon neutral on a lifecycle basis, providing a "future-proof" pathway to global and industry decarbonization goals. **Sanmar.com.t**

ElectRA Series



Partnering for sustainability - the next generation of harbour tugs

Net Zero Goal


What are the important points we should consider? What decisions should we make?

- > Efficiency comparison of e-fuels and battery electric solutions
- > Available electric infrastructure
- ➤ Shore charging power/Cold-ironing power AC or DC
- > How to categorize battery electric vessels
- > New Challenges-New Opportunities to reach greener solutions
- ➤ ElectRA 2800 Test and Sea Trial Experience

Efficiency Well to Propeller

Notes: To be understood as approximate mean values taking into account different production methods. Hydrogen includes onboard fuel compression. Excluding mechanical loss

Sources: Worldbank (2014), Apostolaki-tosifidou et al. (2017), Peters et al. (2017), Larmanie et al. (2012), Umwelthundesant (20 National Research Council (2013), Ricardo Energy & Environment (2020), GGE (no date), ACEA (20

Electric vs Hydrogen Same Energy Comparison

100 kWh electricity

Tesla Model 3

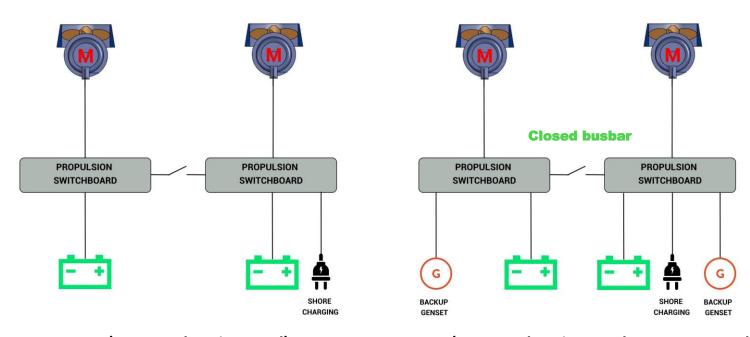
433 km Distance traveled

Consumption 18.45 kWh/100 km 80% efficiency

Toyota Mirai

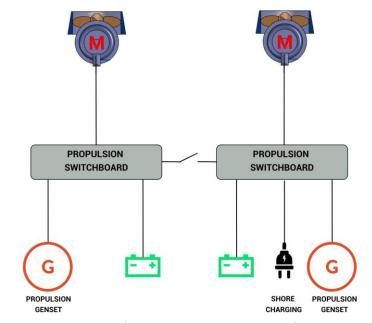
170 km Distance traveled

Consumption 1.02 kg H2/100 km


@ Michael Sura

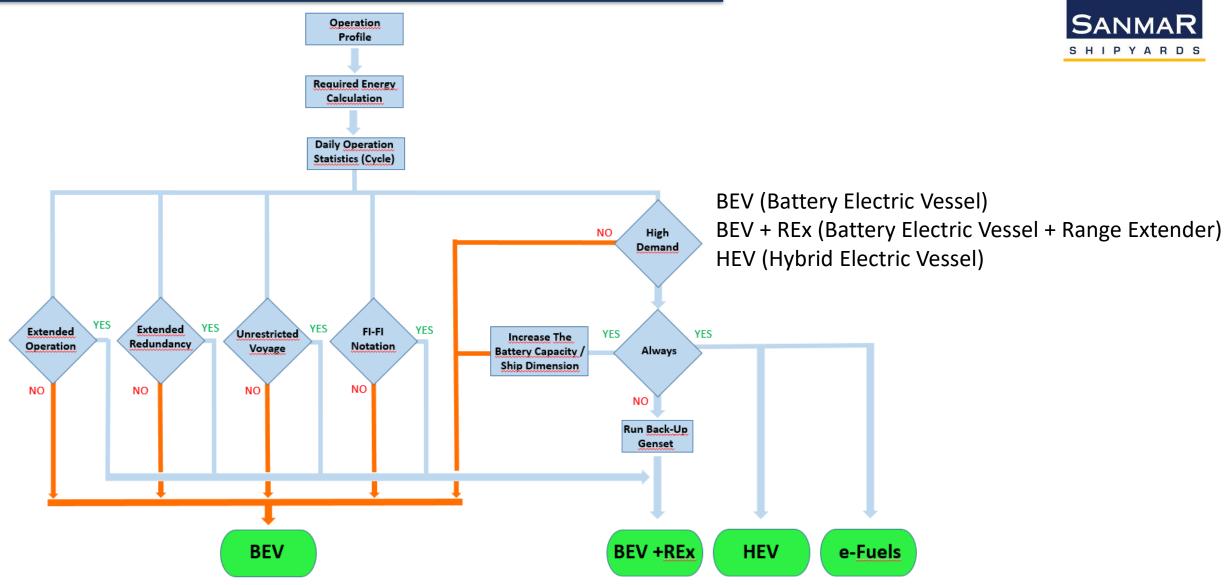
100 kWh 58 kWh 1.73 kg H2 electricity Efficiency of electrolysis - 65% Efficiency of packing - 95%

Efficiency of transport (100 km) - 94%


Battery Electric Vessel Types

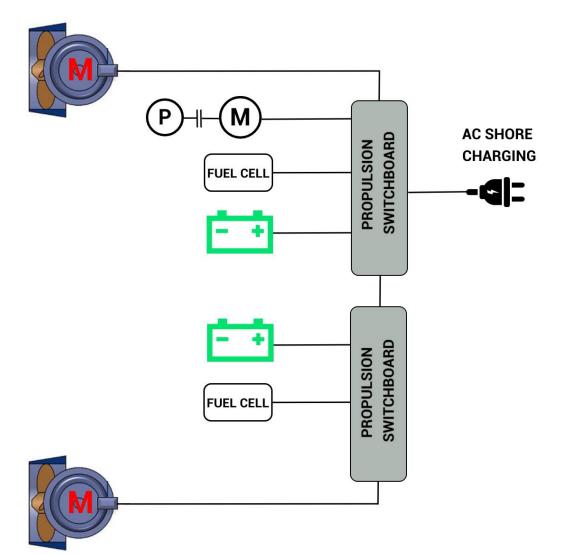
BEV (Battery Electric Vessel)

BEV + REx (Battery Electric Vessel + Range Extender)



HEV (Hybrid Electric Vessel)

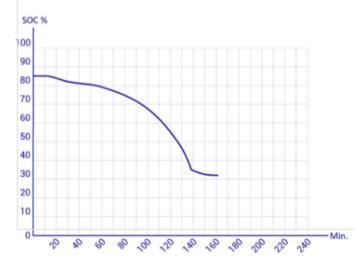
WHEN ALL OPERATIONS ARE DONE ON BATTERIES; THEY ARE BOTH EMISSION FREE SOLUTIONS

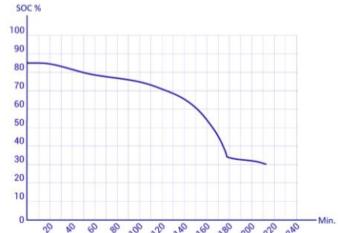

Which is The Right Choice?

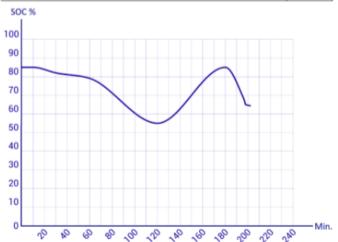
New Challenges - New Opportunities

Harbor tugboat concept;

- New generation batteries with higher energy density
- Fuel Cells with lower price and higher lifetime
- > Alternative fuels with
 - High energy density
 - Less preparation and conditioning equipment
 - High safety levels

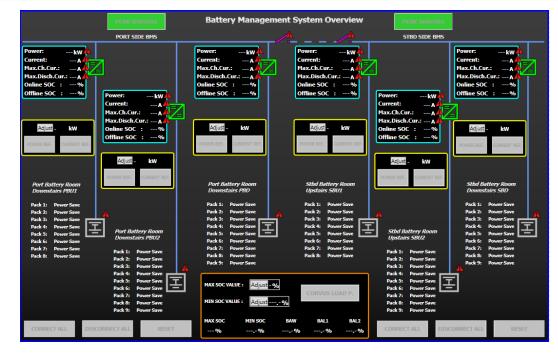

Why is the operation profile so important?



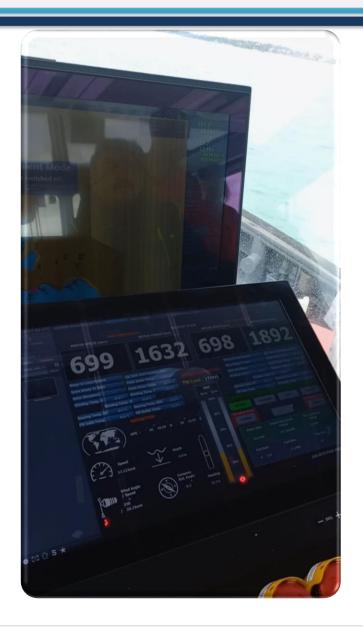

Base Operational Profile				
3 cycles/day				
Desciription		Power (kW)	Duration (minutes)	Energy (kWh)
Warm u	ıp at dock	86	10	14
Transit	to vessel 6 knots (Mob)	258	20	86
	Transit with vessel 6 knots	258	30	129
Assist	avarage load 20%	860	60	860
	avarage load 50%	2150	15	538
	avarage load 80%	3440	2	115
	load 100%	4300	1	72
Return	to the dock 6 knots (Demob)	258	20	86
Securing 215 3		11		
Operation Period (Minutes) 161				
Required Energy for one operation			1910	
Installated Battery Capacity			3616	

	Operational P	roffle 1	8	
3 cycles	/day	1201		0
Desciription		Power (kW)	Duration (minutes)	Energy (kWh)
Warm ı	up at dock	86	10	14
Transit	to vessel 6 knots (Mob)	258	45	194
	with vessel 6 knots	258	60	258
Assist	avarage load 20%	860	45	645
	avarage load 50%	2150	15	538
	avarage load 80%	3440	2	115
	load 100%	4300	1	72
Return	to the dock 6 knots (Demob)	258	30	129
Securing 215 5		18		
Operation Period (Minutes) 213				
Required Energy for one operation			1982	
Installated Battery Capacity			3616	

3 cycles	/day		, ,	,
Desciription		Power	Duration	Energy
		(kW)	(minutes)	(kWh)
warm t	ıp at dock	86	10	14
Transit	to vessel 6 knots (Mob)	258	20	86
	with vessel 6 knots	258	30	129
Assist	avarage load 20%	860	60	860
Backup	Generator is started (charging)	1625	40	1083
Assist	avarage load 50%	2150	15	538
	avarage load 80%	3440	2	115
	load 100%	4300	1	72
Return	to the dock 6 knots (Demob)	258	20	86
Securing		215	3	11
	Operation Period (N	/linutes)	201	
Required Energy for one operation			1910	
Installated Battery Capacity			2486	



Working Modes / New Terms


BATTERY ENDURANCE FI-FI TRANSIT

Port Azimuth Thruster
OVERRIDE SHORE CH. OVERRIDE

- Battery Mode/Silent Mode
 Only Batteries
- Endurance Mode-Range Extender
 In case of emergency or very low SOC% level.
 Backup Generator + Batteries
- Fi-fi Mode
 All power sources are connected/online
 Two backup generators + Batteries
- Transit ModeOnly Backup Generators
- Shore Charging Mode

Some Figures from Trials

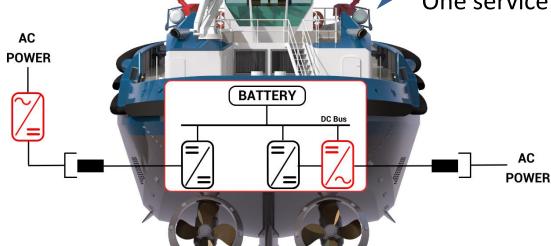
BE QUIET TO HEAR ELECTRA!

Sea Trial 1	8.04.2023
Sea Trial 2	15.04.2023
Sea Trial 3	18.04.2023
Sea Trial 4	19.04.2023
Sea Trial 5	25.04.2023
Sea Trial 6	26.04.2023
Sea Trial 7	27.04.2023
Sea Trial 8	7.05.2023
Sea Trial 9	9.05.2023
Sea Trial 10	13.05.2023

	ElectRA 2800		
Power Source	Only Battery	Only Backup Generators	Only One Backup Generator
Bollard Pull (TBP)	70	35	20
Speed (knots)	13,5	11,5	9,5

	ElectRA 2800	Bogacay
	Pattony	Main
Power Source	Battery	Engine+Genset
Measurement Location	Noise Level(dB)	
Wheelhouse	46	64
Messroom	42	62
Fwd Winch Area	65	70
Aft Winch Area	70	84
Engine Room	66	103
Switchboard Room	64	72
Propulsion Room	85	94

Electric Infrastructure


DC Connection System

Less Space Required on board

The vessel charging location is limited

AC Connection System

- Special charge station is not required
- Wide range voltage and frequency use
- AC power is mature and available in all ports
- The charger is on board
- Less spare parts
 - One service for all converters and chargers

Example: 1000 kWh Battery Group

Charge / Discharge	Power	Duration (Min.)
1C	1000kW	60
3C	3000kW	20
6C	6000kW	10

ElectRA Deliveries (7 delivered, 7 in the order book)

Highest Number of Electric Tugboat Construction

- 3x ElectRA 2800 for HaiSea Marine DELIVERED (28m, 70ton, **5240 kWh** but can be upgraded to 6MWh)
- 2x ElectRA 2300SX for SAAM Towage DELIVERED (23m, 70ton, **3616 kWh** battery capacity)
- 1x ElectRA 2300SX for Sanmar own fleet / Yilport Turkey DELIVERED (23m, 70ton, **1808 kWh** but can be upgraded to **3616 kWh**)
- 1x ElectRA 2200SX for Bukser og Berging DELIVERED (22m, 45ton, **1720 kWh** battery capacity)
- 4x ElectRA 2500SX for BOTAS / Turkey (25m, 70ton, **5000 kWh** battery capacity)
- 1x **ElectRA 2500SX** for SAAM Towage, Chile (25m, 70ton, **3616 kWh** but can be upgraded to 5MWh)
- 2x ElectRA 2500SX on a speculative basis (25m, 70ton, **1808 kWh** but can be upgraded to **3616 kWh**)

