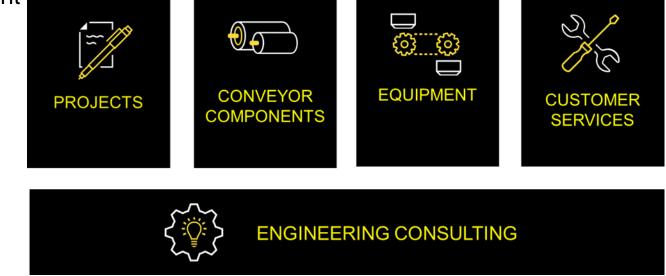
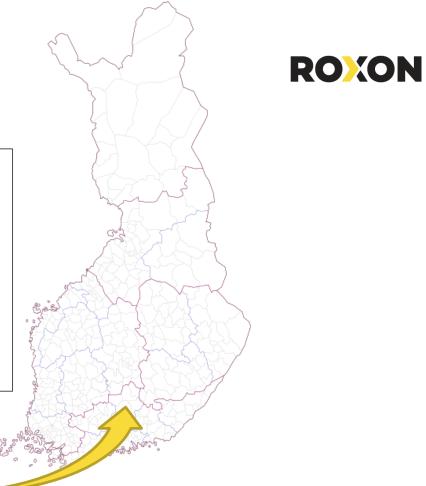
Nepean Conveyors Oy

Digitalization and New Technologies in Bulk Material Handling Solutions

29.09.2022 Pasi Hakkarainen



ROXON Ownership


- Part of Australian privately-owned NEPEAN Conveyors Pty Ltd since 2017
- NEPEAN CEO is Miles Fuller
- Local management

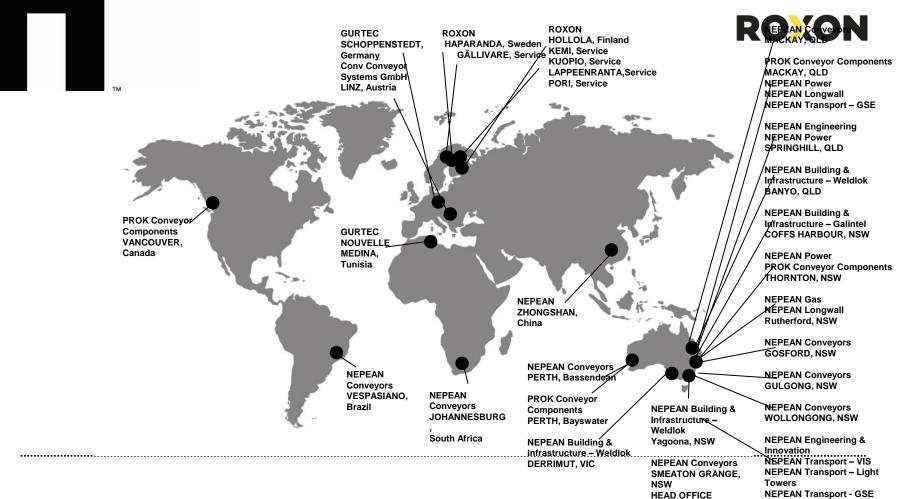
ROXON in nutshell

40 m€ Annual turnover

- **103** Number of employees
- 5 Sites in Finland, Head office in Hollola
- 2 Sites in Sweden

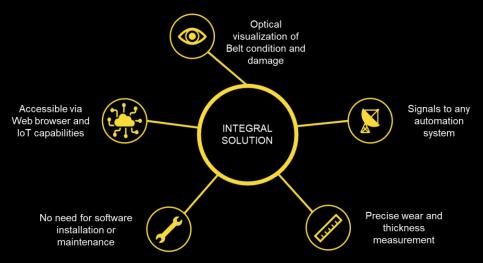
3

ROXON full lifecycle services



- ROXON and NEPEAN together are providing for conveyors:
- Can build conveyors fully using our own conveyor components
- 50 year experience for material handling
- Certified, professional and effective execution organization for securing safe and fully compliant delivery for any part of the globe
- Easy access for global conveyor component production close to you installations

NEPEAN locations:


NEPEAN

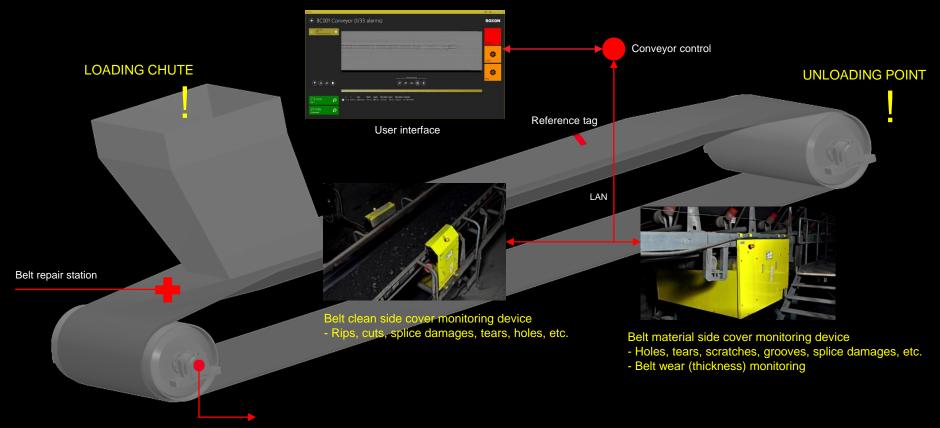
TOP 10 REASON TO USE DIGITALIZATION IN MATERIAL HANDLING SOLUTION

- 1. Visibility into operation process
- 2. Reliable and safe operations
- 3. Enabling Just-In-Time [JIT] manufacturing
- 4. Enhanced connectivity by removing silos
- 5. Avoid accidents and hazardous situations
- 6. Shorter lead times and faster deliveries
- 7. Real-time inventory management
- 8. Better cost management
- 9. Establish a customer-centric supply chain with demand forecasting
- 10. Leverage wearables for overall increased warehouse efficiency

✓ Reliable and safe operations ✓ Avoid accidents and hazardous situations ✓ Better cost management

Avoid productions loss

Increase belt lifetime and reduce stocking



Green values

Cost savings with automation

ROXON HX270 ON-LINE BELT CONDITION MONITORING AND CONTOROL SYSTEM

Belt movement measurement

ROXON HX270 HX270-1 MATERIAL SIDE COVER MONITORING DEVICE

On-line optical 3D scanning

- Lasers are creating a "reference line" on the belt surface.
- Camera scans the laser profile from its images.
- 3D surface profiles of the cover are calculated from the laser profiles with 500 Hz scanning rate.
- Sequential 3D surface profiles are merged to a 3D image representing the 3D shape of the belt surface.
- Shape deflections from 3D images are detected as belt damages automatically.

CAMERA IMAGE

ROXON HX DIGITAL BELT CONDITION MONITORING SYSTEMS A REAL DIGITAL SOLUTION FOR THE BELT CONDITION MONITORING

- Globally first fully automatic on-line and real-time HX270 belt condition monitoring system detecting all belt damages was launched in 2009.
- Over 12 years of experience of HX270 belt surface 3D scanning technology being the ultimate condition monitoring solution for long critical conveyors.
- New innovative compact HX170 belt surface 3D scanner released for condition monitoring of short conveyor belts.

BELT CONDITION MONITORING

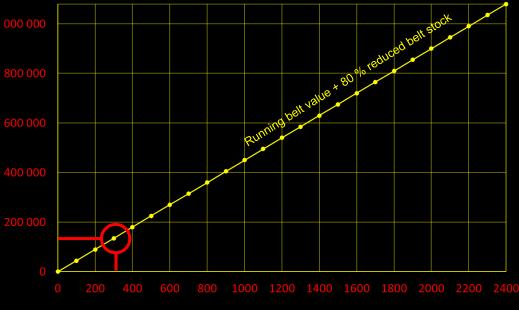
• ROXON Belt condition monitoring devices are optical systems that are developed to harsh conditions.

ROXON HX270 MAIN TECHNICAL ADVANTAGES


- Detect all belt damages
 - Replaces the need for other rip detection/monitoring systems.
- Suitable for all flat conveyor belts
 - Mines, ports, steel mills, energy plants...
 - Textile and steel cord belts.
 - Belt manufacturer independent system.
- On-line automatic 24/7 monitoring
 - Automatic damage detection and damage drive to repair station.
 - Adapts automatically to new and used belts.
- The most optimal reaction time
 - Stops the belt in loading/unloading point CRITICAL damages.
 - Damages detected accurately enabling preventive maintenance.
- Non-contact optical monitoring
 - No loops, coils or modifications to the belt needed.

ROXON HX270 AVOID PRODUCTION/LOADING LOSS ENABLES FAST RETURN OF INVESTMENT

- Example production facility
 - Production loss 50 000 EUR/h (can be e.g. up to 150 000 EUR/h)
 - HX270 investment price 150 000 EUR
- Return of investment equals 3 production loss hours
- Avoid damages to grow critical
- Stop the belt on critical damage incident
- Utilize planned maintenance stoppages

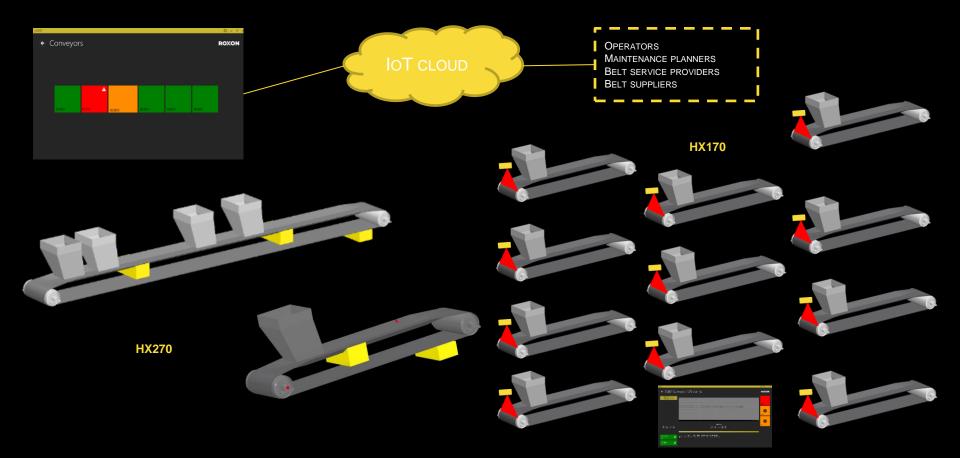


Lost production hours

ROXON HX270 RETURN OF INVESTMENT BY BELT VALUE

- Example conveyor belt
 - Belt price 250 EUR/m (+installation cost)
 - HX270 investment price 150 000 EUR
- Stop the belt on critical damage incident enables
 - Saving the running belt value + belt stock reduction by 80 %
- Return of investment equals 340 m of belt length

EUR



Belt length in meters

ROXON HX270

Customer	Conveyor / Belt	C-C length	Belt speed	Nbr. of Modules	Belt width	Capacity	Material
FQM Pyhäsalmi mine, Finland	HKU6 / EP800	300 m	1 m/s	2	1200 mm	800 t/h	Hard rock, copper ore after primary crushing
Talvivaara mine, Finland	OLC, ST2500	2150 m	3 m/s	2	1600 mm	4000 t/h	Hard rock, nickel ore after primary crushing
LKAB Malmberget, Sweden	TR020 UG, ST4500	1692 m	3 m/s	2	1600 mm	3000 t/h	Hard rock, iron ore "red-line"
LKAB Malmberget, Sweden	TR010 UG, ST1000	685 m	3 m/s	3	1600 mm	3000 t/h	Hard rock, iron ore "red-line"
LKAB Malmberget, Sweden	TR003 UG, ST2500	330 m	3 m/s	2	1600 mm	3000 t/h	Hard rock, iron ore "red-line"
Boliden Aitik, Sweden	BT2030 OLC, ST6000	3018 m	4.8 m/s	2	2000 mm	8000 t/h	Hard rock, copper ore after primary crushing
Boliden Aitik, Sweden	BT1490 OLC	695 m	4,4 m/s	2	2000 mm	8000 t/h	Hard rock, copper ore after primary crushing
Boliden Aitik, Sweden	BT1650 UG, EP	75 m	2,9 m/s	2	2200 mm	8000 t/h	Hard rock, copper ore after primary crushing
Boliden Tara, Ireland	UG, ST2500	304 m	2,1 m/s	2	1200 mm	1600 t/h	Hard rock, copper/zinc ore after primary crushing
JCS Kazzink, Kazakhstan	OLC	1280 m	2,0 m/s	1	1400 mm	1500 t/h	Hard rock
LKAB Narvik Port, Norway	TR010 UG, ST1250	620 m	2,9 m/s	3	2000 mm	9000 t/h	Iron ore pellet
LKAB Narvik Port, Norway	TR011, ST3150	632 m	2,9 m/s	2	2000 mm	9000 t/h	Iron ore pellet
Efemcukuru Gold mine, Turkey	CNV006 UG	428 m	1,5 m/s	1	900 mm	1000 t/h	Hard rock, gold ore after primary crushing
Outokumpu Kemi mine, Finland	HK2 UG, EP2000	450 m	2 m/s	2	1400 mm	2000 t/h	Hard rock, Chrome ore after primary crushing
Efemcukuru Gold mine, Turkey	CNV007 surface	150 m	1,5 m/s	1	800 mm	1000 t/h	Hard rock, gold ore after primary crushing
Kisladag Gold Mine, Turkey	OLC	2547 m	5 m/s	2	1216 mm	4000 t/h	Hard rock, gold ore
Pulp mill, Finland	Incline, surface, EP630	570 m		1	1400 mm		Wood chips for pulp boiler

ROXON HX DIGITAL BELT CONDITION MONITORING SYSTEMS A REAL DIGITAL SOLUTION AND THE INFO TARANSFER

ROXON HX270 INVESTMENT BENEFITS

- Avoid production loss
 - Detect belt damages early enough to react.
 - Minimize downtime in hazardous belt damages.

Reduce costs

- Reduce belt stocking.
- Increase belt life time.
- No need for regular manual belt inspection work.
- Less and more efficient repair work.
- Improve safety
 - Belt failure can be a serious safety risk.
 - Belt damage inspection and repair is planned and done in the pre-defined safe repair stations.
 - Minimal human exposure at conveyor areas.

Find out more from our web pages.

www.roxon.com

available soon

