on the safe side

SHIBATAFENDERTEAM GROUP

GERMANY | FRANCE | AMERICAS | ASIA

Technical presentation - 14th Intermodal Africa 2015

Presented by: D. Polte

on the safe side

CONTENT

1. SHIBATAFENDERTEAM GROUP

2. FIRST STEP / BASICS

- a. Collection of Data
- b. Determination of Applicable Standards

3. SECOND STEP / DESIGN

- a. Prepare Energy Calculations
- b. Selection of the Rubber Fender Unit
- c. Preliminary Design of the Steel Fender Panel
- d. Selection of Accessories
- e. Preparation and Submission of Sketches/Drawings

4. THIRD STEP / FINALISATION

5. <u>SUMMARY</u>

on the safe side

SHIBATAFENDERTEAM GROUP

TURNOVER : ~ 40,000,000.00 EUR

DELIVERED PROJECTS: > 2,500 worldwide since 2006

PROJECT SIZES: 200+ Fender-Systems/project >5,000,000 USD/project

PRODUCTION:Rubber Fender production in Japan and MalaysiaSteel fabrication mainly in GermanyFoam Filled Fender production in Germany and the
US

ACHIEVEMENTS:

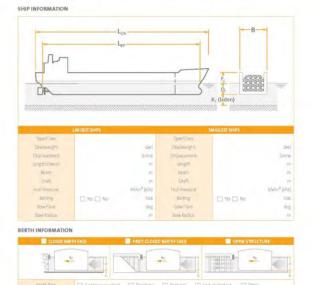
ISO 9001 ISO 14001 PIANC Type Approval for std. Range

on the safe side

CASE STUDY

Typical steps for the design of a high performance, reliable and high quality fender system!

on the safe side

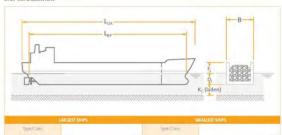

FIRST STEP - BASICS COLLECTION OF DATA

- Reliable data is vital for a technically and economically sound Fender Design
- Use SFT questionnaire to collect all key data
- Discuss each individual fact in detail
- However, be aware which data is most important for the project and next step (next slide)

Status: Preliminary Detail Tender

Project: New Construction Upgrade

on the safe side


FIRST STEP - BASICS COLLECTION OF DATA

Most Important Data:

- Design Vessel / Energy Absorption
- Max. Reaction Force and Hull Pressure
- Berthing Speed and Angle
- Load Cases, Flat, Belting, Line/Point Loads
- Largest and Smallest Vessel
- Factor of Safety (FOS)
- Quay Wall Design

Project: New Construction Upgrade Status: Preliminary Detail Tender

Deadweight		devt	Deadweight		dwt	
Displacement.		tonne	Displacement		Lonne	
Length Overall		107	Length		172	
Beam		m	Beam		m	
Draft		177	Draft:		101	
Hull Pressure		kiv/m [#] (kPa) Hull Pressure		kN2m ² (kRa)		
Belting	Yes No	5ize	Belting	Ves 🛄 Na	57ze.	
Bow Flare		deg	Bow Flare		deg	
A			D			

on the safe side

FIRST STEP - BASICS DETERMINATION OF APPLICABLE STANDARDS

- PIANC2002: Guidelines for the Design of Fender-Systems
- British Standard 6349: Maritime Structures
- EAU 2004: Recommendations of the Committee for Waterfront Structures
- DIN 18800: Design and Construction of Structural Steelwork
- EUROCODE 3: Design and Construction of Structural Steelwork

on the safe side

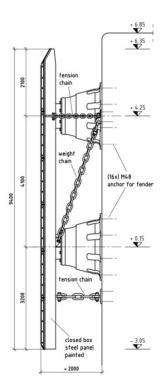
SECOND STEP - DESIGN PREPARE ENERGY CALCS.

- Add carefully all available data
- Adjust factors accordingly
- Be aware of the most severe factor

Berthing velocity

$$E = \frac{1}{2}M * v^{2} * C_{e} * C_{m} * C_{s} * C_{c}$$

IBA	IN THE SAFE SIDE	22,419 Hamb	taus 1 b	Fax: + 4 E-mail:	(0) 40 63 86 10 0 9 (0) 40 63 86 10 180 nfo@shibata.fender.te ww.shibata.fender.tea		
Project:	Fender for Lagos				Ref	Not	02015
Berth:	Berth 11 - 14	Prepared:		D.Pol	D.Polte		
ountry:	Nigeria		Date:	08-0kt-20	15 Revis	ion:	00
letric			-				
	Design Method						
	Ship Type	CONTAINERS	Form New Wolf				
	Data Source	PIANC WG12					
	Primary Dimension	Deplacement					
	Interpolation value		000				
		Table (unat: 4218	9,01 (0-19070MLD)				
	SHIP CHARACTERISTICS						
	Loading.			y Laden			
	Operating Deadweight			DWT			
	Gross Tonnage		N/A				
	Twenty-foot Equivalent Unit		8.333				
	Cubic Capacity Design Displacement	Mo	N/A 125.000	ma			
	Length Overall	Los	327,332				
	Length Between Perpendiculars	Lar	312,332				
	Beam	в	43,267				
	Design Draft	D	13,000	m	Fany Lauren		
	Design Freeboard	F	9,850	m			
	Block Coefficient	C _a	0,694				
	BERTH & APPROACH						
	Structure Type		Closed face				
	Under Keel Clearance	K _c	10% of laden dra	ift		1,300 m	
	Point of Contact from Bow	×	Quarterpoint	_		25,0 %	from bow
	Eccentricity Calculation Method Added Mass Calculation Method		Full Method PIANC 2002				
	Seawater Density	Paw		1/m ³			
				4.1			
	BERTHING FACTORS						
	Berthing Angle	a		deg	Unet defining	AND A CONTRACT	
	Impact Point to Centre of Mass	8	81,025				
	Radius of Gyration	ĸ	75,552				
	Velocity Vector Angle	1	69,51	deg.			
	Added Mass Factor	CM	1,800				
	Eccentricity Factor	C _E	0,531				
	Berth Configuration Factor	C _C	0,900				
	Hull Softness Factor	Ci	1,000				
	BERTHING VELOCITY						
	Velocity Table		PIANC WG33: 20				
	Approach Conditions		d) Good berthing				
	Berthing Velocity	VB	182	mm/s			
	Normal Energy	En	1.783,9	kNm			
	Factor of Safety	Es	1,500				
	Abnormal Energy	EA	2.675,9	1.44			

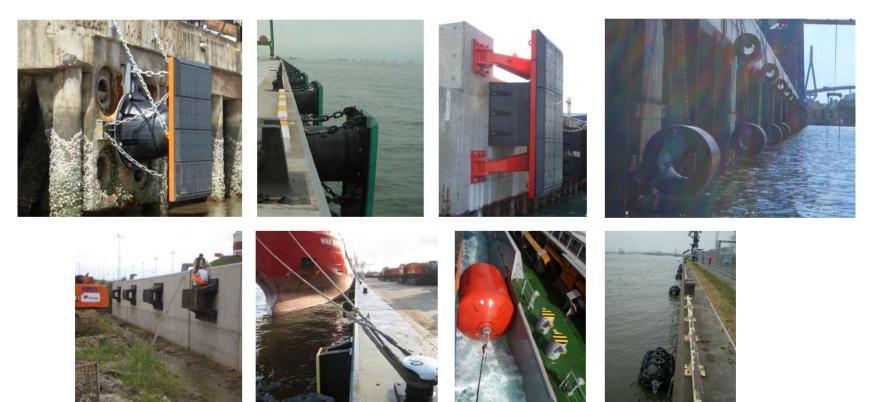


on the safe side

SECOND STEP - DESIGN SELECTION OF THE RUBBER FENDER UNIT

Consideration of the following issues:

- Quay Wall Designs
 - Sheet Pile Wall
 - Combi Wall (Sheet Pile Section with Piles, or Beams)
 - Open / Semi-Open Pile Structure
 - Concrete deep-wall
 - Gravity Structures (Caissons, Concrete Blocks)
- Max. Stand-off Distance
- Preferences of the Consultant / Client



on the safe side

SECOND STEP - DESIGN SELECTION OF THE RUBBER FENDER UNIT

Standard Types of Rubber Fender Units

on the safe side

SECOND STEP - DESIGN SELECTION OF THE RUBBER FENDER UNIT

Design criteria: - Energy = 2281 kNm

- Reaction = <3500 kN
- Hull Pressure = < 250 kN/m²
- Berthing Angle = 6°
- Stand-off = < 2000 mm
- => Tolerance and correction factor to be discussed!

Selected Fender: 2nos. SPC-1300H G2.3

E = 1168 kNm * 2 = <u>2336 kNm (>2281)</u>

R = 1705 kN * 2 = <u>3410 kN (<3500)</u>

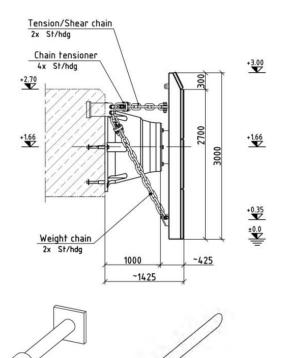
on the safe side

SECOND STEP - DESIGN PRELIMINARY DESIGN OF THE STEEL FENDER PANEL UPPER CHAMFER

on the safe side

SECOND STEP - DESIGN SELECTION OF ACCESSORIES

Chain and Shackle Assembly

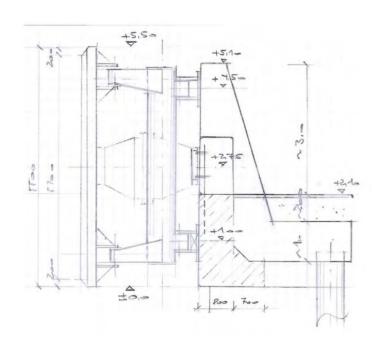

- Weight Chains
- Tension Chains
- Shear Chains
- Chain Tensioner
- => Make sure you consider angles!

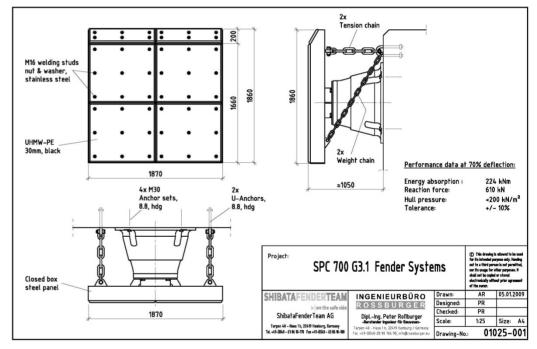
Anchors

- Cast-In Anchors (New Concrete)
- Resin Anchors (Existing Concrete)

UHMW-PE Low Friction Plates

- Reclaimed (FQ Material, Multicolour)
- Virgin Material





on the safe side

SECOND STEP - DESIGN PREPARATION AND SUBMISSION OF SKETCHES/ DRAWINGS

on the safe side

THIRD STEP - FINALISATION

The Final Steps in preparing a high performance Fender Design:

- Detailed discussion/evaluation of the submitted proposal
- Review and consideration of stakeholders' comments
- Submission of final design and drawings (dwg/pdf Files)
- Prepare specifications for high performance fenders
- Additional requirements to allow only highly qualified bidders to participate
 - PIANC Certification
 - Product Liability Insurance up to 5M USD
 - Claim free record
 - > Determination of panel weight range for specific project

on the safe side

REFERENCE PROJECTS

SHIBATAFENDERTEAM GROUP

GERMANY | FRANCE | AMERICAS | ASIA

▶ on the safe side

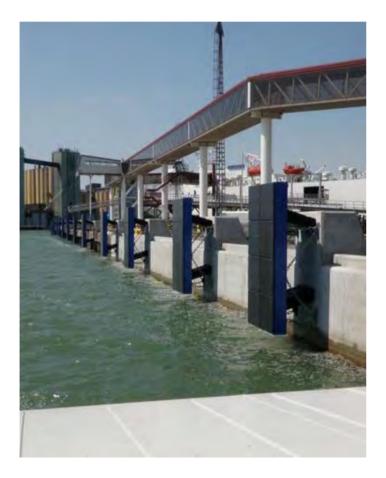
CSS-Fender System Khalifa Port - Abu Dhabi, U.A.E

on the safe side

SPC-Fender System for Bulk Terminal - Amsterdam, The Netherlands

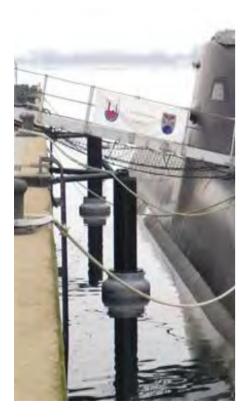
▶ on the safe side

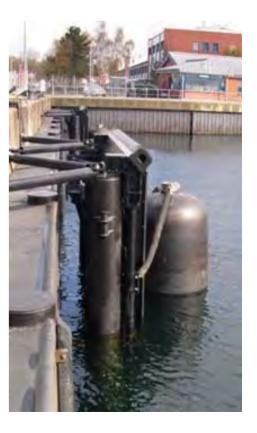
SPC Pile-Fender System for Ferry Terminal - Hirtshals, Denmark



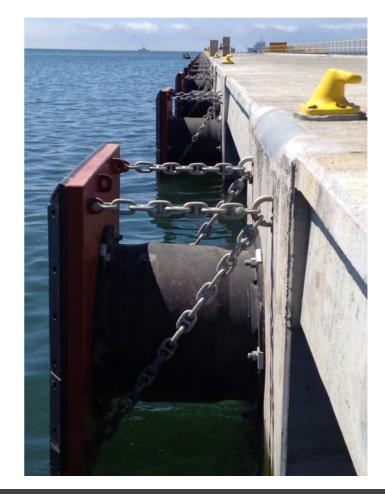
▶ on the safe side

FE-Element Fender System for Ferry Terminal - Ystad, Sweden




▶ on the safe side

Foam / Donut and Hydro-Pneumatic Fender System for Navy Base



b on the safe side

123nos. CSS-Fender System for Navy Shipyard, Chile

on the safe side

Special Arch-Fender System and PMF-System - Port of Dover, UK

▶ on the safe side

SPC-Fender System for Port of Zadar, Croatia

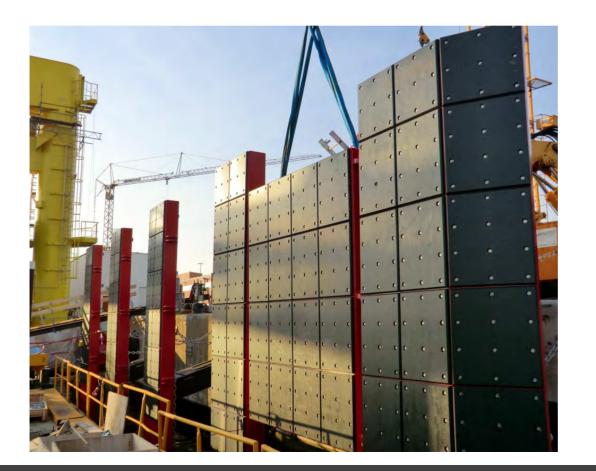
▶ on the safe side

Parallel Motion Fender System for Oil Terminal - Labuan, Malaysia

▶ on the safe side

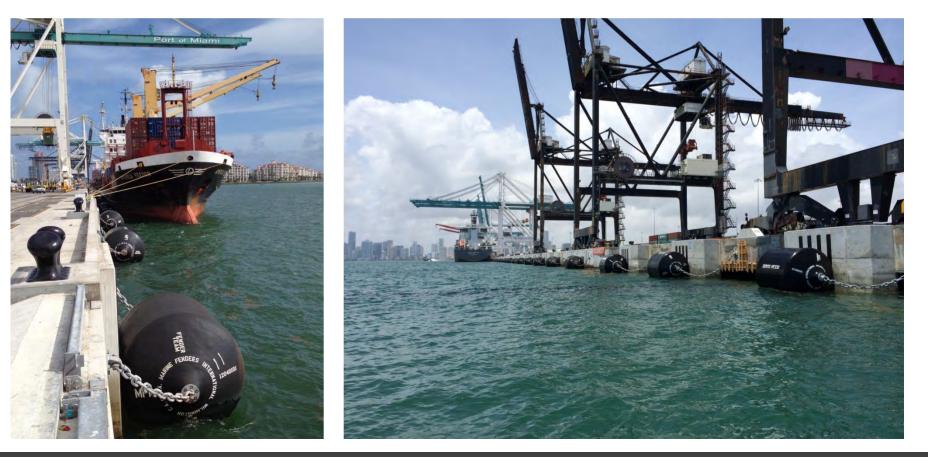
Double SPC System for Container Terminal - Port of Beirut, Lebanon

b on the safe side

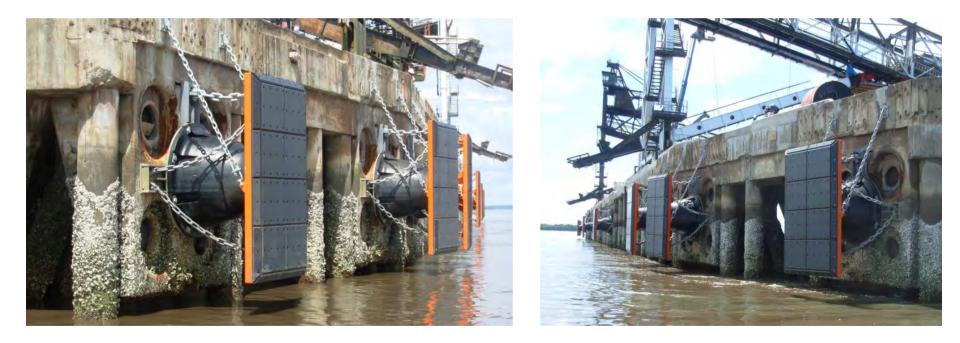

Ship Separator (10mx7.6m) for Oil Terminal - Guatemala

on the safe side

FE-Element/CSS-Cell Pile Fender System for Ferry Pier 1 -Rostock, Germany



on the safe side


60pcs. 10' x 16' Ocean Guard Foam Filled Fender for Container Terminal - Port of Miami, FL - USA

▶ on the safe side

SPC-Fender System - Pepel Island, Sierra Leone

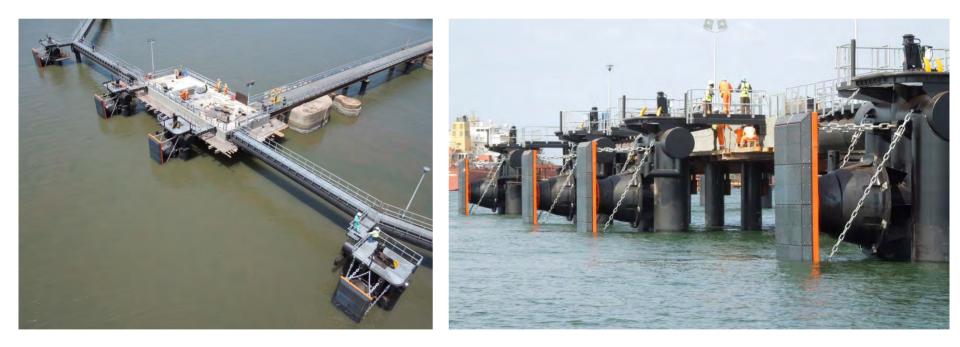
▶ on the safe side

Donut Fender System for Ferry Terminal - Egholm, Denmark

▶ on the safe side

SPC-Fender System for Container Terminal - Long Beach, CA - USA

▶ on the safe side


>200nos. SPC-Fender Systems for Maasvlakte II -Rotterdam, The Netherlands

▶ on the safe side

SPC-Fender System for Fuel Terminal - Sierra Leone

▶ on the safe side

Thank you for your attention!