

INTERMODAL AFRICA 2020

Christian Schuster

ZERO EMISSIONS

Technical challenge port equipment: 100% diesel fuel replacement

ZERO EMISSIONS CONTAINER HANDLER

ONE SIZE DOES NOT FIT ALL

Application 1a

- Fixed break periods
- Normal power consumption

Application 1b

- Fixed break periods
- Normal power consumption
- Opportunity charging

Application 2

Irregular break periods Normal to High power consumption

OPTION 1a

- Large Li-Ion battery
- Conventional charging
- Low to Medium duty cycle

OPTION 1b

- Large Li-Ion battery
- Opportunity charging
- Medium duty cycle

OPTION 2

- Fuel Cell with Small Li-ion battery
- Choice of charging system
- HD cycle: 1 day w/o refill

ENERGY EFFICIENCY BY ENERGY RECOVERY

Typical applications show a theoretical energy recovery potential of 15% over the duty cycle

BRAKE ENERGY RECOVERY

> Energy recovery on braking

- 80 ton vehicle travelling at 23 km/h
 Kinetic Energy = 0.45 kWh
- 6 seconds to stop: 272 kW of theoretical stopping power available (Energy = Power x Duration

System solution

- Traction motor acts as generator
- Regenerative braking first, additional hydraulic braking only when needed

LIFT ENERGY RECOVERY

Energy recovery on lowering

- 5-high mast: 13 meters of lifting with 52 ton total load
 → Potential Energy = 1.8 kWh
- 26 seconds to lower: 255 kW of theoretical power available

System solution

- Patent pending hydraulic full flow recovery system for lifting/lowering of the load
- High efficiency system for other hydraulic functions

LIFT/LOWER SYSTEM

System setup

LIFT/LOWER EFFICIENCY

- Measurements performed at 0, 28 and 40 ton payload
 - > Up to 64% energy recovery
 - Higher payload results in higher recovery percentage
 - Energy recovery still possible with 0 payload

IMPACT ON ENERGY CONSUMPTION

theoretical energy recovery potential of 15% for all systems

- Calculated energy consumption reduction based on current system efficiencies for hydraulic functions:
- This is compared to the same electric truck without the hydraulic energy recovery.

Drive Power [kW]

-Lift Power [kW]

-Aux power [kW]

-Steering_Power [kW] -Sum of Powers [kW]

-Tilt Power [kW]

HYSTER

LIFT/LOWER DEMO

- > The three challenges of electrification
- 1. Operational planning of charging
- 2. Charging infrastructure
- 3. Total peak power consumption from the grid

CHARGING SOLUTIONS

> Wireless charging vs. Conductive charging

	Wireless charging	Conductive charging (Auto)	Conductive charging (Manual)
Efficiency	90%-94%	>94%	>94%
Operation	Automatic	Automatic	Manual
Maintenance	++	+	0
Available Power range	< 250 kW	< 900 kW	< 350 kW
Cost	-	0	+
Infrastructure	Charger installation partly in ground – major roadworks needed	Pantograph/Pin/Shoe connector Charger cabinet	CCS2/Mode 4 standardized charging – Charger cabinet CCS3 in preparation for higher charging powers
_	Wireless	pantograph pin	connector
Sourc	e: WAVE IPT	www.wabtec.com http://ec.staubli.com	www.phoenixcontact.com

ELECTRIFICATION OF PORTS - CHARGING

20 Trucks

Simultaneous battery charging of 20 trucks at 200 kW requires 4 megawatts

Grid power not sufficient in many locations

REFERENCE: http://shrinkthatfootprint.com/averagehousehold-electricity-consumption

INFRASTRUCTURE CHALLENGE

20 Trucks

 Hydrogen enables fast fueling of vehicles and avoids placing large electricity demands on the grid from battery charging

HYDROGEN AVAILABILITY

- Commercially produced H₂
 - ► Local production with renewable energy with electrolysis \rightarrow 2 H₂O(I) \rightarrow 2 H₂(g) + O₂(g)
 - Deriving H₂ from methane/biogas (SMR)
 - \rightarrow CH₄ + H₂O \rightleftharpoons CO + 3 H₂

HYSTER DEVELOPS REACHSTACKER WITH FUEL CELL

TO SUM UP

- Electrification is ready to happen also for (more efficient) port equipment
- 2. Energy source decision depends on local conditions and application
- 3. Hydrogen and Grid power can be complimentary solutions for ports
- 4. Standardization (charging/hydrogen) is needed

STRONG PARTNERS. TOUGH TRUCKS."

ANY QUESTIONS?