

Performance measurements in port communities Example East African Ports

HPC Hamburg Port Consulting, Thomas Gondermann Cape Town, April 19 2017

Content

- 1. HPC Hamburg Port Consulting
- 2. Case Study: Scope and Background
- 3. Container and Data Flows
- 4. Performance Monitoring System

HPC Hamburg Port Consulting GmbH

- Founded in 1976 as subsidiary of HHLA Hamburger Hafen und Logistik AG
- Around 100 experts (incl. subsidiaries), annual turnover in 2015: approx. EUR 15 million
- Since 1976 port and transport-related projects in more than 100 countries, both in the private and public sector
- Approx. 1,400 projects world-wide with extensive experience in container terminal operations

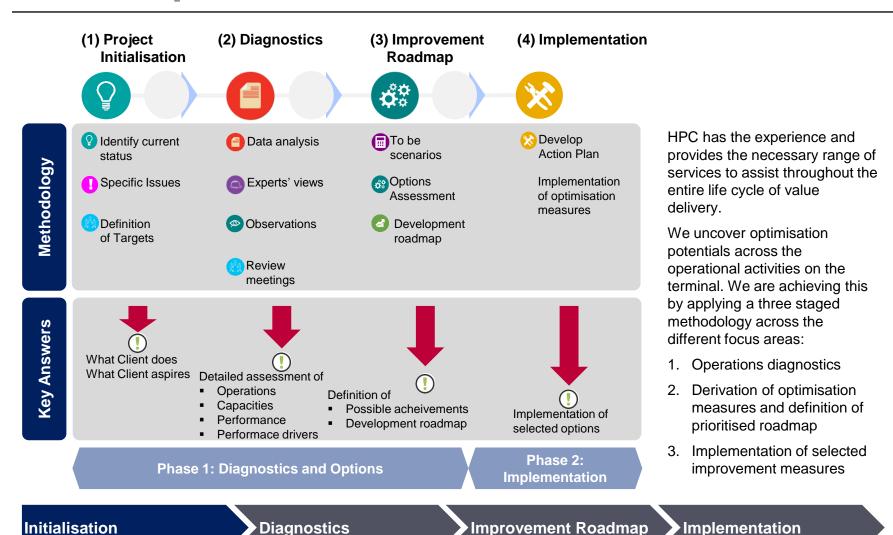
Mother-Company HHLA:

- 3 Container Terminals in Hamburg, capacity +10 mill TEU p.a.
- Multipurpose and bulk terminals
- Intermodal transport
- Logistics services

HPC Hamburg Port Consulting GmbH

Our Focus

- Ports
 - Container terminals
 - Bulk terminals
 - Cruise ship terminals
- Logistics facilities
 - Rail terminals
 - Inland ports
- Intermodal facilities



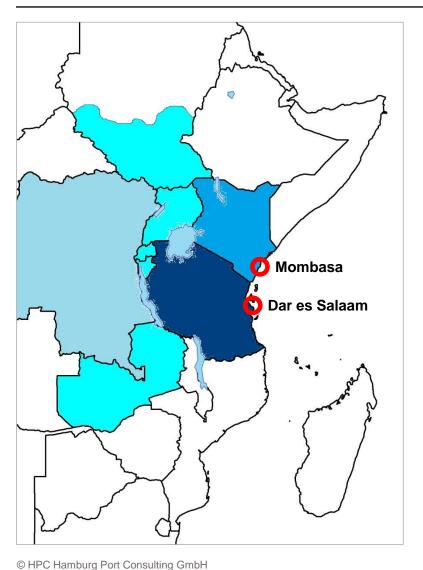
Our Clients

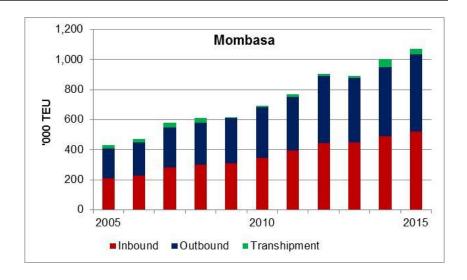
- Private terminal operators, port authorities & public institutions
- Governments
- Logistics service providers
- Banks and private investors
- International organisations, such as World Bank, UN

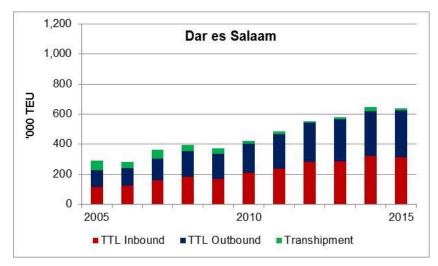
HPC – Optimisation Services Overview

© HPC Hamburg Port Consulting GmbH

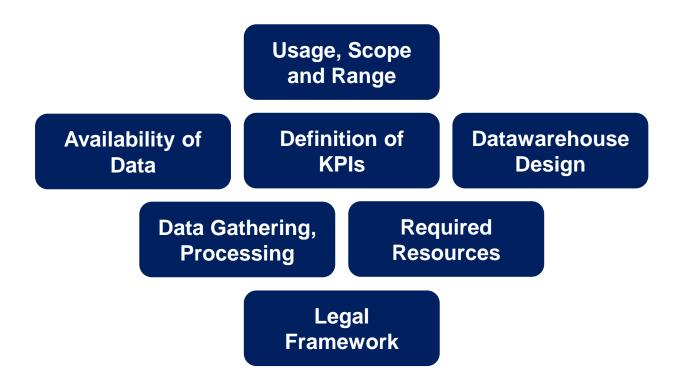
5




Content


- 1. HPC Hamburg Port Consulting
- 2. Case Study: Scope and Background
- 3. Container and Data Flows
- 4. Performance Monitoring System

Case Study East African Ports



Case Study Core Elements

Port-wide performance measurement system – building blocks

Digitalisation

World Bank: Port Development Themes

1960s 1990s 2000s Expansion / Rehabilitation **Elements / Keywords Customs** Asycudas, ... IT systems Reform **Intermodal Transport** Port cities Trade facilitation **Privatisation Landlord Ports, PPP** Port sector strategies **Industry trends** Integration Lean management **Optimisation**

Regional Background

Transport corridors

- Northern Corridor Transit and Transport Coordination Authority (NCTTCA, 2007)
- Central Corridor Transit Transport Facilitation Agency (TTFA, 2006)

Regional trade facilitation

- Trademark East Africa (2010)
- Northern Corridor Dashboard (2012)
- Central Corridor Data Portal (2012)

Port specific initiatives

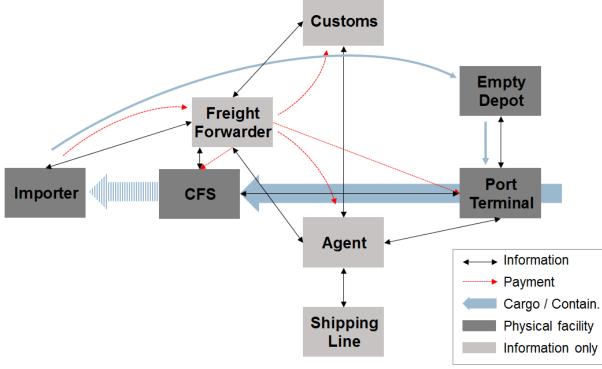
- Kenya: Kentrade (Single Window)
- Mombasa Port Charter (2014)
 - Reduce constraints at the Port of Mombasa
 - Target: clearing 70% of cargo throughput via the green channel
 - Service Level Agreement: achieving performance targets at some 130 KPIs
- Tanzania: Regulatory agency Sumatra (2001, Surface & Marine Transp. Regulatory Authority)

Content

- 1. HPC Hamburg Port Consulting
- 2. Case Study: Scope and Background
- 3. Container and Data Flows
- 4. Performance Monitoring System

Process-based Approach

Target


- Port-wide Performance Measurement System
- Drilling deeper than existing dashboards or Port Regulators' reports

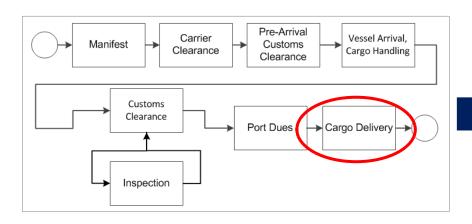
Stakeholder engagement

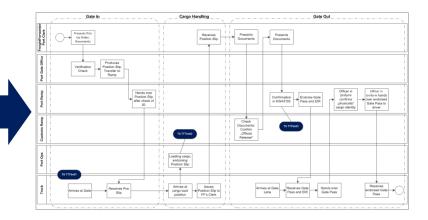
Requirement

 Beginning with detailed process analyses

Process scheme Import via CFS

Processes and Sub-Processes


Managing complexity


- Multitude of processes
- Complexity of procedures
- High degree of variability

Individual port profiles: Selection of relevant cargo trades

Example: Gate Process Container Fetch

Complexity

15+ process steps, 3 to 4 interactions

from truck arrival after confirmed payment of port dues to truck departure

Administrative requirements

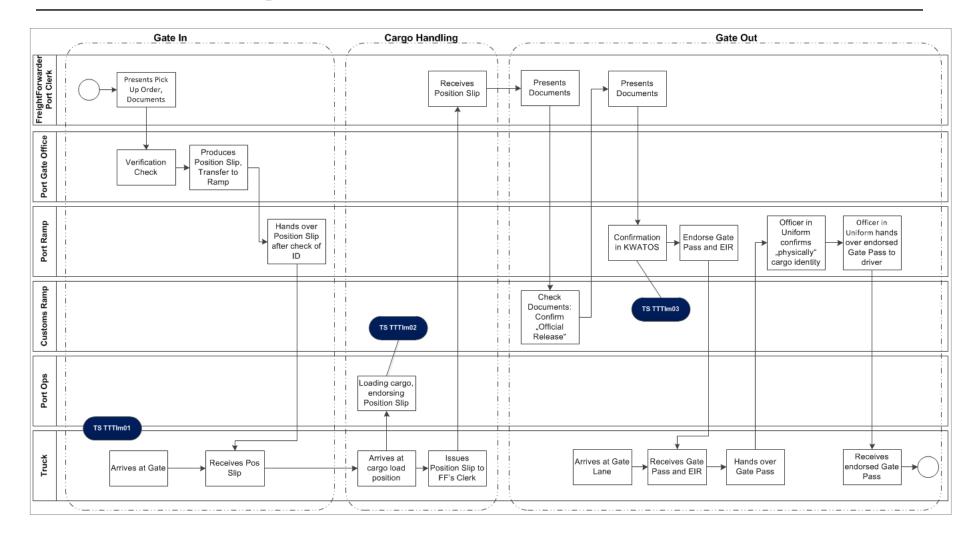
Confirmation by gate staff and by customs staff

that the container is cleared for delivery

Interactions

Freight Forwarder agent – truck driver

Exchange documents


Access point

- Documents check
- Return document for later endorsements
- Issue information of cargo location

Process Steps and Data Available

Content

- 1. HPC Hamburg Port Consulting
- 2. Case Study: Scope and Background
- 3. Container and Data Flows Through Ports
- 4. Performance Monitoring System

Defining Targets

Usage of data

- Feed current structures
 - Weekly meetings
 - Corridor Dashboard
- Additional reporting

Interpretation framework

- Benchmarks
- Target Values

Data analysis

- KPI measurement provides
 - Average values or peak values or deviation from target
 - For a predefined period
 - For a selected user group
- Interpretation of data is required, can reveal certain problems and potential causes
- KPI measurements do not provide explanations
- KPI measurements do not provide instruction how to improve

Aim: Future use of KPI data

- Frequent Communication / publication of data: awareness, tranparency
- Individual information exchange to instill self-optimisation
- Improvement campaigns
- Feedback-loops with port community

Principles for Defining KPIs

Relevance

- Measurements that contribute to the project
- Measurements that describe core processes, ignore marginal activities

Practicability

- Measurements feasible to implement with a view to resources
- Measurements for which data will available in a workable format,
 i.e. electronically transmittable with standard protocols

Sustainability

- Measurements that are maintainable in the future, i.e. data should be used from sources that are not project dependent but stable, e.g. Single Window, TOS
- Only as many measurements that can be maintained and processed in order to avoid effects of weariness in the port community


Expectations

Conditions

Feasible KPIs

Identifying Core Performance Areas

Vessel Servicing

Dwell Time

Truck / Train Servicing

Why relevant

Vessel costs
Schedule maintenance
Berth capacity

Drivers

Vessel delays (other ports)
Weather
Marine services
Berth availability
Terminal performance

Why relevant

Cargo availability
Capital lockup (cargo)
Yard capacity

Drivers

Manifest and clearing processes:
Freight forwarder, customs, OGAs
Risk management and inspections

Why relevant

Logistics costs
Hinterland capacity (rail)
Terminal capacity (trucks)

Drivers

Processes in port operations
Traffic (inside / public roads)
Fraud / theft prevention, security processes

Data Gathering

Data sources

- IT systems
 - Terminal Operation System (TOS)
 - Customs System
 - Port Communication System
- Possible: Manual reports

Data collection

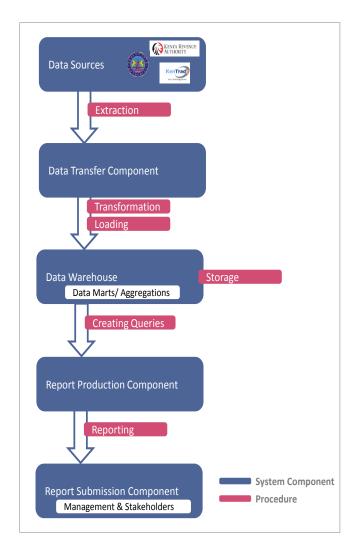
- Automated
 - Interfacing systems (realtime or batch)
- Semi-automated
 - Pre-defined reports from reporting tools, set intervals
- Manually
 - Reports to be generated per event

Frequency

- Realtime / daily
- Weekly

Collecting frequency to correspond with aim.

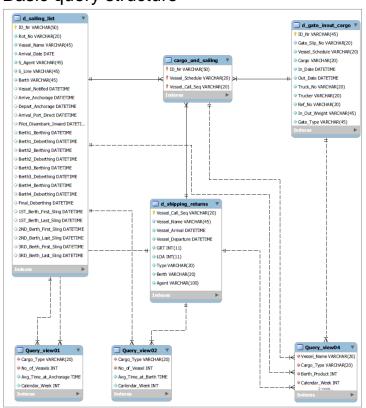
- → Weekly data collection
- Frequency excludes all manual reporting
- Data sources should be limited to available systems
- System generated reports suffice, no realtime data exchange needed

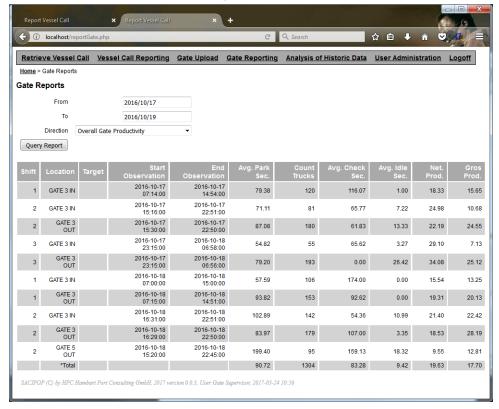

20

Implementation

Implementing port performance monitoring

- Sources
 - Data generation / extraction and provision
- 2. Data processing entity
 - Check integrity
 - Transfer / alter data
 - Load
 - Compute KPIs
 - Generate Reports
 - Distribute / communicate reports
- 3. Port community
 - Data interpretation
 - Deviation of improvement measures



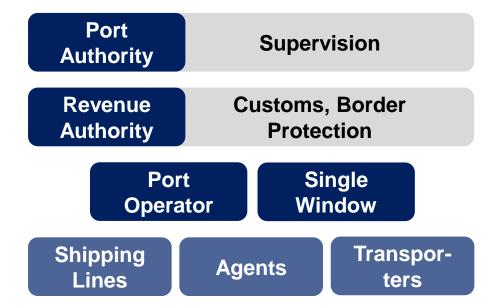

Data Warehouse Systems

Examples

Basic query structure

User interface for reporting

Challenges


Legal Framework

- Existing scope of legislation does not always allow that a Port Authority puts performance monitoring into practice
- Might require enhancement of the Authority's scope
- Might require to alter other authorities' rights and obligations

Administrations and parastatals

- Level of collaboration?
- Willingness to share?
- Acceptance of being monitored?

Powers	Mandate
Very High	Regulating
	E.g. Penalties for non-compliance
High	Controlling
	Monitor and evaluate standards
Medium	Act as Mediator in case of deviation of standards
Low	Facilitating
	Collect, analyse, and publish data

