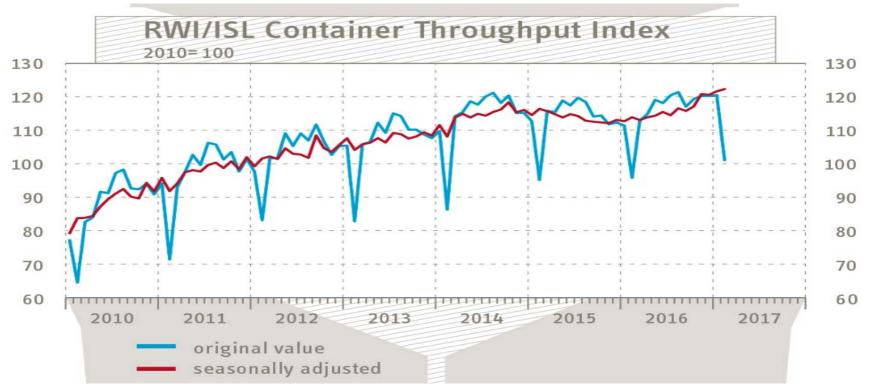
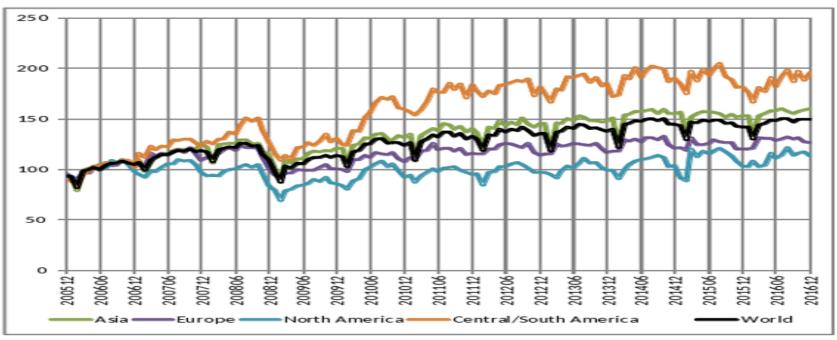

How to get more out of your existing resources



Learn from the big ones

Holger Schuett ISL Applications GmbH 17th Intermodal Africa 2017

Caoe Town, April 18th – 20th 2017


During February 2017, the Container Throughput Index increased by 0.5 points, reaching 124.5 points. It thus seems that world trade has gained a solid momentum. Compared to the same month a year ago, the index stood 6 points higher. A similarly strong increase was last observed in 2012.

RWI/ISL Container Throughput index

- 82 ports worldwide
- ~ 60 % of worlds throughput
- available 3 weeks in new month <u>www.isl.org</u> \rightarrow news

container a diffe by containents bee 2000 - bee 2010

Index Dec 2005 - Nov 2006 = 100

	2016											
	Dec	Nov	Oct	Sep	Aug	Jul	Jun	May	Apr	Mar	Feb	Jan
Total TEU (million)	37.3	37.3	37.3	36.7	37.5	37.4	36.9	37.2	36.3	35.9	32.4	35.4
Growthover previous month	0.0	0.0	18	-2.2	0.1	15	-0.8	2.6	0.9	10.8	-8.3	-0.2
Growthover same month previous year	5.3	5.2	24	13	1.1	0.7	0.2	0.2	-0.2	-1.7	0.5	-1.0

RWI/ISL Container Throughput index

- 82 ports worldwide
- ~ 60 % of worlds throughput
- available 3 weeks in new month <u>www.isl.org</u> \rightarrow news

1989 1991 1993 1995 1998 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013

Products rebranding: CAPS SCUSY ViTO

Bremerhavener Gesellschaft für Investitionsförderung und Stadtentwicklung mbH

Optimisation and Simulation – References (selected)

ASEAN Terminals, Philippines Bromma, Singapore **Centerm Terminal, Vancouver, Canada** CSX, Jacksonville, USA **DP World, Australia EUROGATE, Germany** HHLA, Hamburg, Germany HPA Hamburg Port Authority, Germany HIT, Hong Kong JadeWeserPort, Germany Cargotec / Kalmar Industries, Finland CMSA ICTSI, Manzanillo, Mexico MCT, Gioia Tauro, Italy MTL, Hong Kong

Noell Crane Systems, Germany

NTB, Bremerhaven, Germany Port of Tacoma, USA **PORTEK International Ltd., Singapore** PSA International, Singapore Red Sea Gateway Terminal, Jeddah, KSA SPIA ICTSI, Columbia **Tata Consultancy Services, India TCP** Valparaiso, Chile **TecPlata ICTSI, Buenos Aires, Argentina Terminal Investment Ltd, Netherlands** TotalSoftBank, Korea **TPT, South Africa** Warsteiner Brewery, Germany

How to improve terminal's efficiency

The first ALV of KMI

Terminal's productivity is driven by

- The equipment
- The control system (TOS)
- The processes

Terminal Automation (processes as well as equipment) prepares for optimised operation, but more than ever very skilled control staff is required.

The last sentence within the Singapore Maritime Gallery (opened 09/2012):

" It is man making the difference"

Learning from the huge ones

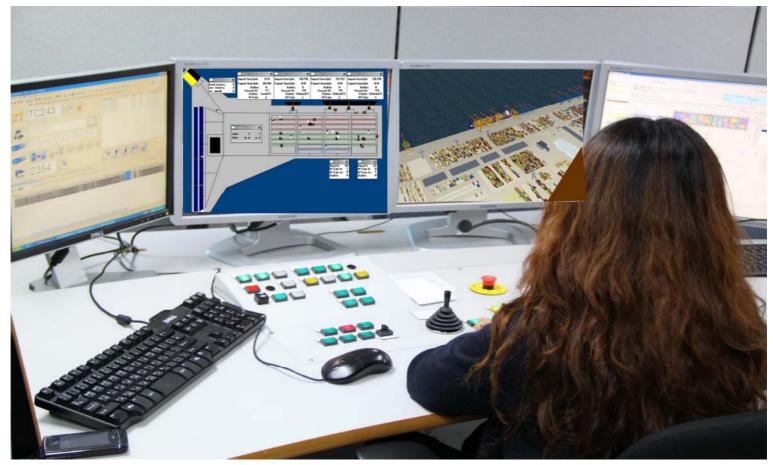
© ISL 2016

Vessel simulator

train your control staff (as shipping lines do)

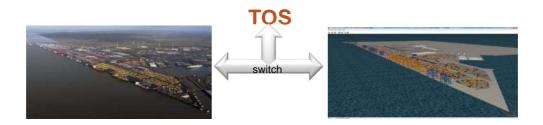
Reference Simulationszentrum HSB 130416

Crane simulator


train your control terminal staff (as you do with crane drivers, e.g. Liebherr:)

Learning from the huge ones

© ISL 2016



The main mission of CHESSCON VIRTUAL TERMINAL

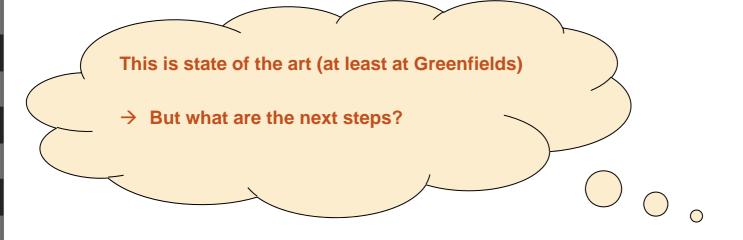
what you can do with $\ensuremath{\mathsf{CHESS}}\xspace{\mathsf{CON}}$

Emulation:

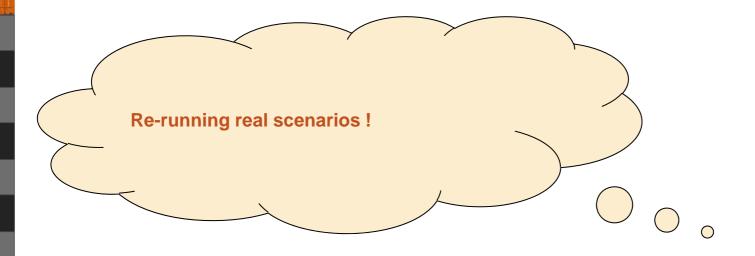
- use your Terminal Operation System (TOS)
- use your software interfaces
- but use a Virtual Container Terminal

Benefits:

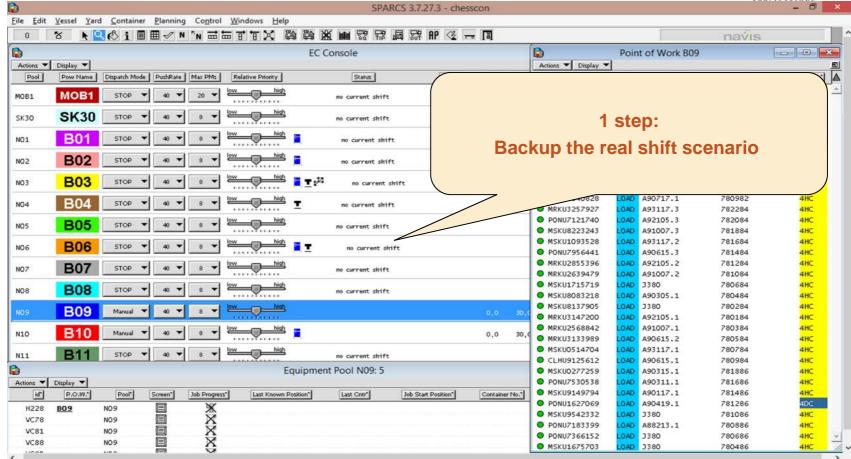
- no impact on the real environment
- training under laboratory conditions
- self-learning available
- fine-tune the TOS parameters
- re-run bad shifts

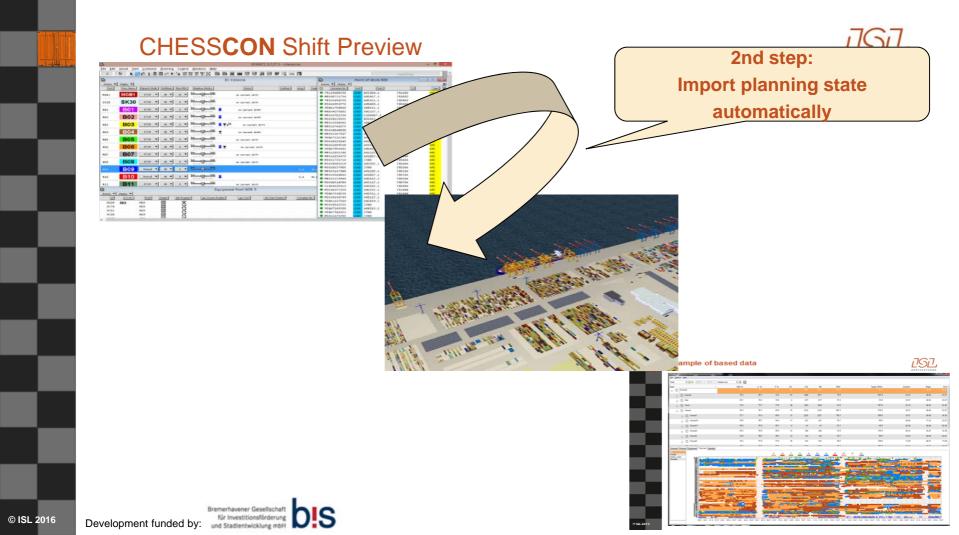

SPARCS 3.7.24.1 - Kassl

File Edit Vessel Yard Container Planning Control Windows Help


0 8	N S B i			L 🏠 🛱	医围	AP 🖮			n	avis
Equipment Po	ol QC06: 6				Point o	of Work Q06				
Actions 🔻 Display	y 🔻				Actions 🔻	Display 🔻				
Handler id*	Icon Only*	Screen*	Dispatch State*	Move D	E Sequer	ce" Container No."	Type*	Current Position*	Handler id*	Dispatch State*
121	1 🗰 🚔	E	Carrying a container; Waiting at Row	1321+	• 1	GATU8091789	45G1 *T	R-121*	121/R33	In Progress
122	i-• 🖀		Go to crane; Waiting at Ship	1321+	0 2	GATU8588121	45G0 CA	NX020*0361490	124	Go to Crane
124	<u>∃</u> 0 🚘		Go to crane; Waiting at Ship	1321+	3	FSCU6472343	45G1 CA	N×020*0361290	125	Go to Crane
125	i-0 🖀		Go to crane; Waiting at Ship	1321+	• 4	HLXU6350672	45G1 CA	N×020*0361090	122	Go to Crane
C06	*	E			5	HLXU6273703	45G1 CA	NX020*0361688		(not evaluated)
022	F		the second se		6	CPSU6439396	45G1 CA	NX020*0361488		(not evaluated)

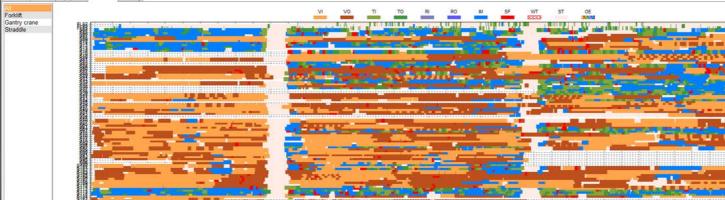
_ 🗆 🗙





CHESSCON Shift Preview

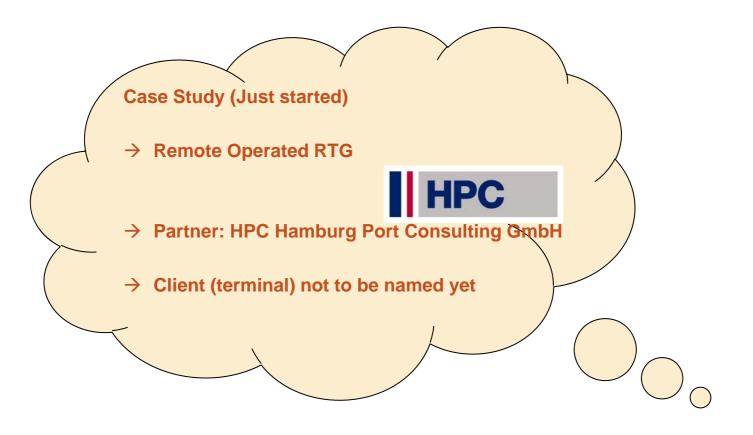
CHESSCON Shift Preview


3rd step: fast simulation of the shift

CHESSCON Shift Preview

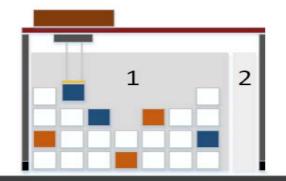
CT OEE - Loaded Data: CACHESSCON\OEE\DEE-MoveHistory.txt									Y	PRIICATIONS	*
Eile Options Help					4th	step	: intuitive e	evaluation of			
Total Total Default tree	- 🕑 😂					otop.					//
Node	OEE %	U %		1			the efficie	ncv		Begin	End ^
B- 🛞 Terminal	40.7	\leq		1							23:27
e 🛞 Internal	10,2	82,1	12,4	01	1808	18/1	19,0	645,0	25.21	00:00	23:27
👦 🎯 Rail	26,1	35,0	74,8	2	877	877	37,4	50,0	23:27	00:00	23:27
- O Truck	13,5	75,7	17,8	38	1243	1249	53,6	301,0	23:19	00.03	23:22
B- 🛞 Vessel	36,3	85,1	42,6	72	5752	5754	245,3	576,0	23:27	00:00	23:27
e- 🛞 Vessel1	37,1	91,4	40,6	37	2235	2237	120,1	296,0	18:37	00:00	18:38
e – 🛞 Vessel10	39,8	89,7	44,4	11	237	237	39,1	88.0	06:04	17:23	23:27
😠 — 🛞 Vessel11	46,6	97,0	48,1	6	61	61	23,1	48,0	02:38	00:00	02:39
🖃 – 🛞 Vessel2	26,5	94,6	28,0	15	309	309	33,6	120,0	09:12	03:27	12:39
e – 🛞 Vessel3	33,8	88,4	38,2	12	143	143	36,7	96,0	03:53	00:00	03:54
🗑 — 🛞 Vessel4	34,5	91,0	37,9	16	574	574	48,5	128,0	11:49	00:01	11:50
	20.2	0.50	20.5	75	4574	4574	04.4	200.0	47.44	00.45	12.17

Overview Percent Equipment Time line Standby



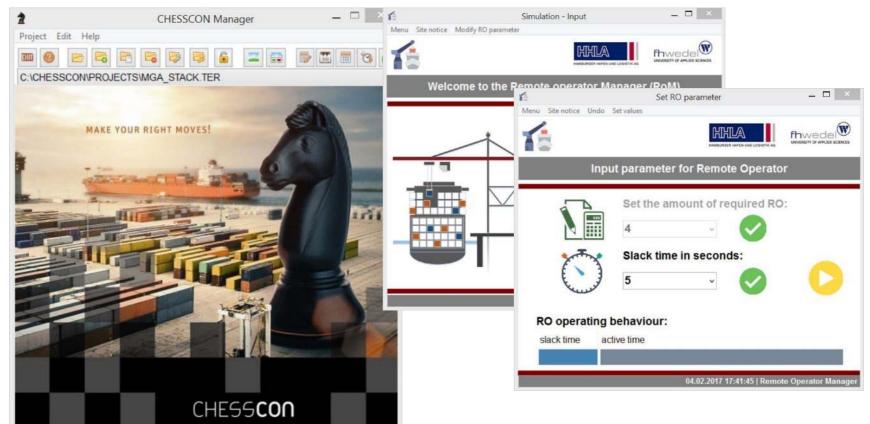
and the second of the second second

1000



Case Study - Remote Operated RTG

- 1: automated area
- 2: remote controlled area



Real site with 15 RTG available (manned)

→ How many drivers will be needed by an Remote Operation of a semi-automated RTG

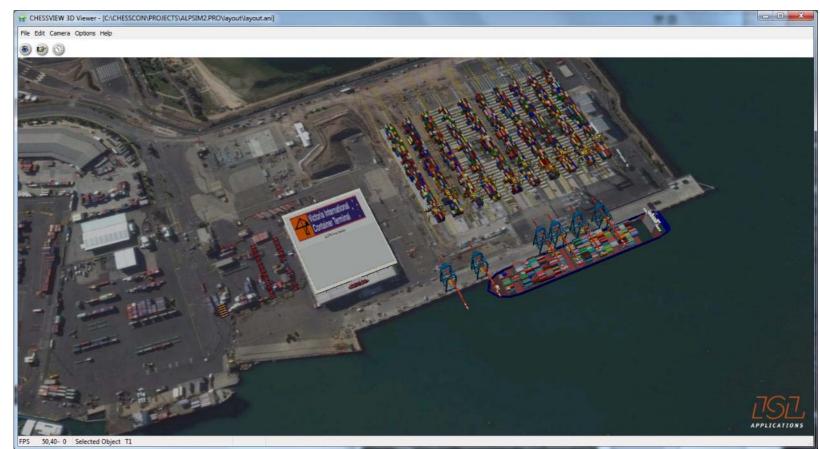
Case Study - Remote Operated RTG

Case Study - Remote Operated RTG

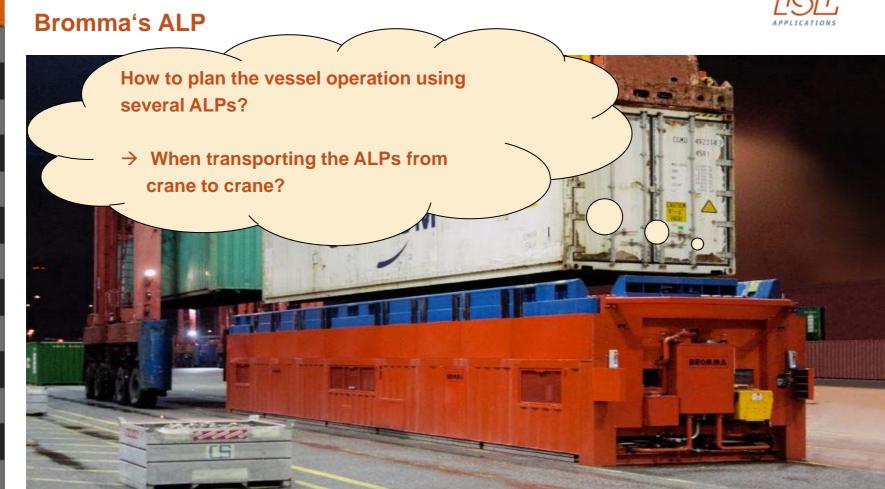
Base Scenario: Re-run the real shift

- 13 RTG have been in operation during the shift → at least 13 RTG drivers
- 1. Scenario: Remote operated, semi-automated RTG
- Automated operation within the block
- Remote operated handshake for the truck operation
- Delay time for activating the Remote Operator some 5 sec. per move

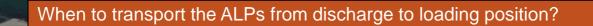
Perform	i <u>ance R</u>	O use			
	mvs/h	waited in %	%	gross time/je	ob in min
5 RO	18	0,09	%	Ø	3,3
4 RO	22	0,78	%	S	2,73
3 RO	30	5,92	%	Ø	2
2 RO	43	25,37	%	8	1,39


More scenarios to come:

- use standard RTG instead of semi-automated ones
- high workload RTG (discharge/load operation) may get dedicated drivers (no remote control)
 - ...

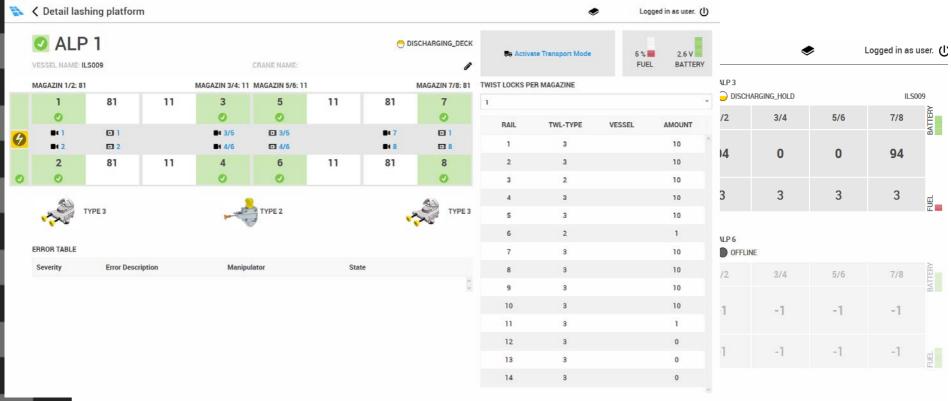


Case Study - ALP at Melbourne terminal



APPLICATIONS

File Edit Camera Options Help


ی 🖻 🌀

© ISL 2016

AOS calculating the utilisations

© ISL 2016

AOS forecasting the operation

	Simulation								
Planning Live	ALP05 fror	n QC0′	1 to QC	:03 at 0	05:30)				
/essel work list ALP's C	alc result								
imeline Problems Used	Rules								
		VI20	VO20	VI40	VO40	ER	тс		
QC01 - ALP02			_		8				
QC01 - ALP05						80			
QC02 - ALP04			_						
QC02 - ALP06									
QC03 - ALP01	ana								
QC03 - ALP05									
QC04 - ALP03					8				
QC04 - ALP07									
	01:23:20)	02:46:4	10	04:10	:00	05:33:20	06:5	6:40

Cites from NTB – North Sea Terminal Bremerhaven

- a joint venture of APM Terminals and the Eurogate group
- CHESSCON Shift Preview was developed out of our demands for a fast simulation of the current state of shift planning.
- Together we (NTB) and ISL Applications GmbH defined a module, which is based on operational as well as IT expertise.
- The result is easy to use and supports short term optimisation of the day-to-day shift planning.
- Why Shift Preview ?
 - → Terminals,

which today are not in the position to analyse their operation predictively, are living yesterday

Marc Dieterich, Operations Manager at NTB

Learn from the big ones:

 Instead of waiting for bottlenecks and RE-act only 目目目

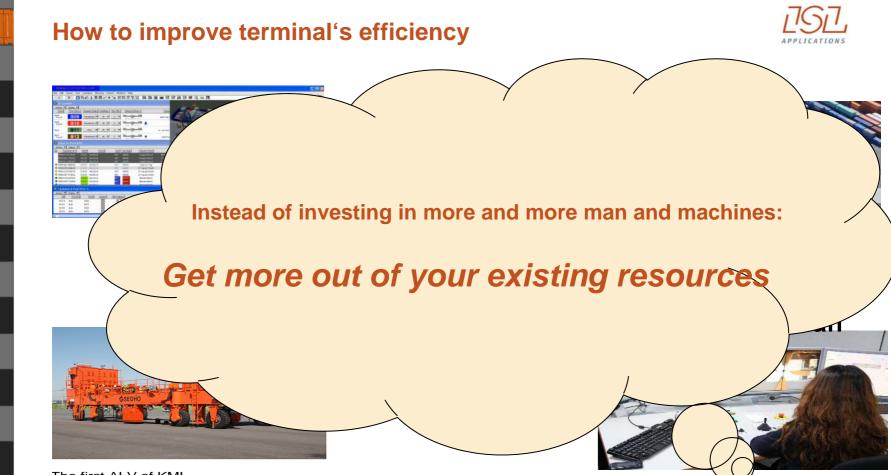
相間比

1319

3

→ Become PRO-Active
 by looking into the future

Conclusion


- Train your staff with Virtual Terminals
- Fine-tune your Terminal Operating System
- Look into the future operation

The first ALV of KMI

MAKE YOUR RIGHT MOVES!

TIT

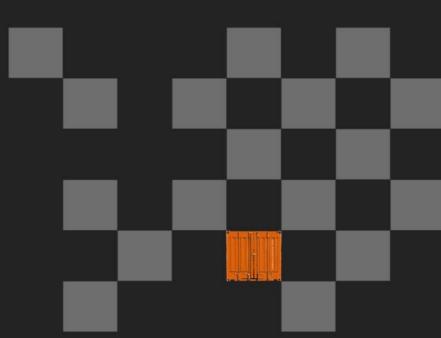
milino

CHESS**CON**

1 Pit Pi

WWW.CHESSCON.COM

I'm looking forward to the following discussion!


Holger Schuett, Prof. Dr.-Ing., CEO

ISL APPLICATIONS GMBH

Barkhausenstrasse 2 27568 Bremerhaven Germany

P +49 471-30 98 38-38 www.isl-applications.com

