

Connecting the Hinterland

Smart integration of rail into supply chains

Background HPC

Developments in Global Transport

Port-Rail Connectivity

Improving Process Efficiency

Intermodal Network Concepts

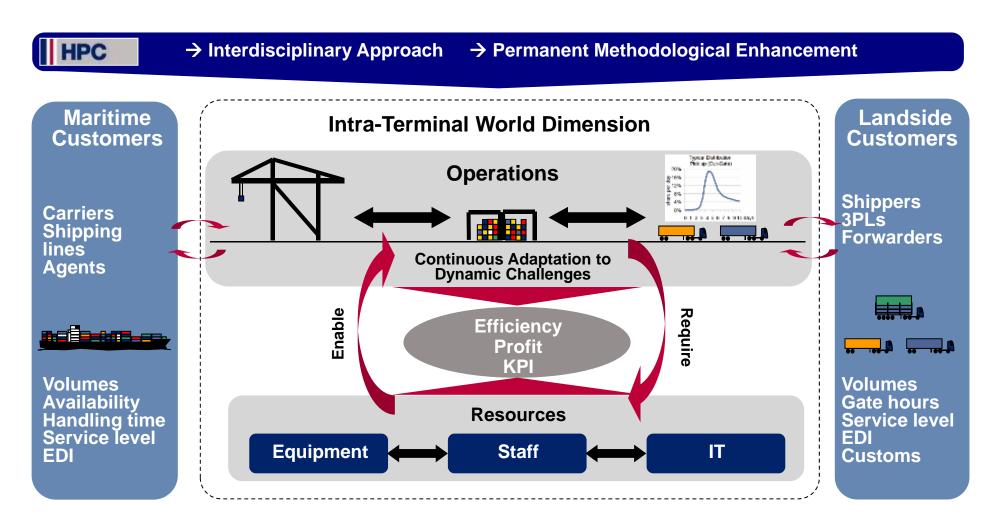
Background HPC

Our Focus

- Ports
 - Container terminals
 - Bulk terminals
 - Cruise ship terminals
- Intermodal facilities
 - Rail terminals
 - Inland ports
- Logistics facilities

Our Clients

- Private terminal operators, port authorities & public institutions
- Governments
- Logistics service providers
- Banks and private investors
- International organisations, such as World Bank, UN


© HPC Hamburg Port Consulting GmbH

3

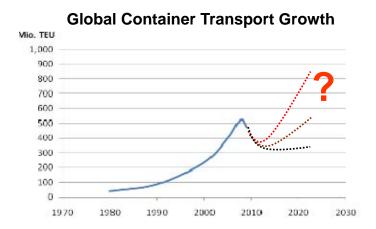
Background HPC

Our Concept – Holistic Approach From Operator's Perspective

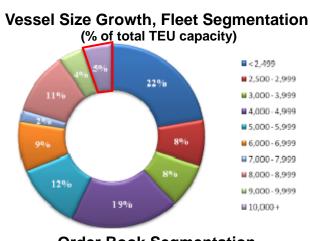
Background HPC

Developments in Global Transport

Port-Rail Connectivity

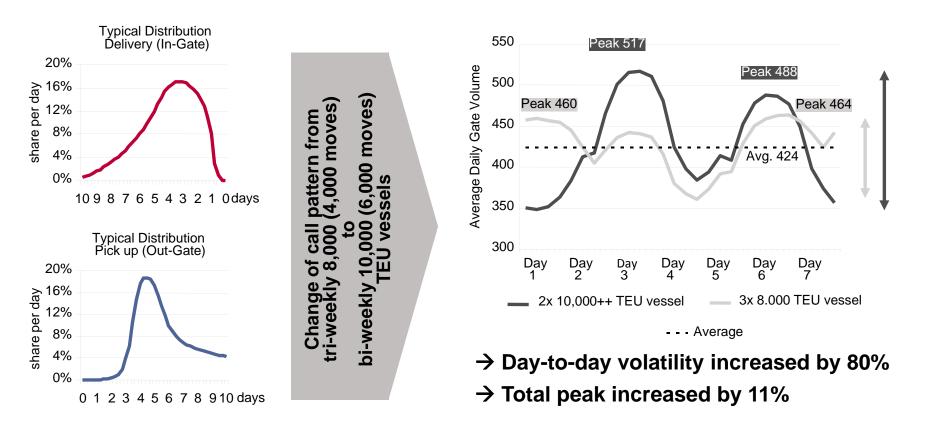

Improving Process Efficiency

Intermodal Network Concepts


Developments in Global Transport

Situation

Evolution of Containerships 1966-2014


Order Book Segmentation (% of TEU order capacity)

Developments in Global Transport

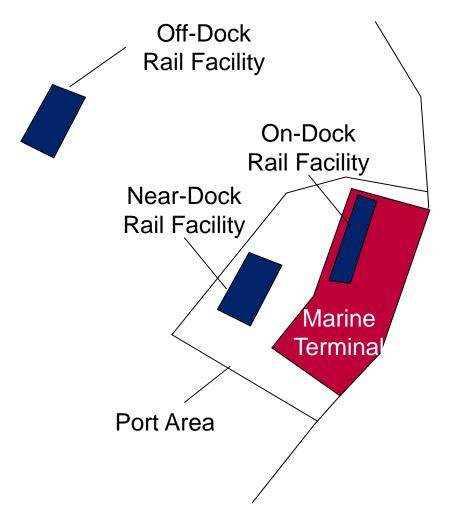
Challenges

→ Vessel size growth creates new challenges for intermodal railway facilities in ports and on intermodal networks!

Background HPC

Developments in Global Transport

Port-Rail Connectivity


Improving Process Efficiency

Intermodal Network Concepts

Port-Rail Connectivity

Overview

On-Dock:

- No traffic issues on public streets
- If well planned, no double/triplehandling of boxes required
- Density might not be sufficient for direct trains

Near-Dock/Off-Dock:

- Congestion on public streets
- Typically requires double/triplehandling
- Density can be created (from multiple marine terminals)

Port-Rail Connectivity

Exemplary Challenges

Space
Space constraints on marine terminal

No on-dock facility available

Advantages of on-dock rail not realized

Lack of efficiency

Market

Volumes in smaller locations are low

Creates operational issues

Low frequency and high cost

Lacking capabilities to meet market

THREAT: RAIL NOT ATTRACTIVE!

How to overcome the downsides of a near-dock/off-dock facility?

→ Coordinated approach required to improve efficiency!

How to consolidate small volumes?

→ Improve intermodal network capabilities!

Background HPC

Developments in Global Transport

Port-Rail Connectivity

Improving Process Efficiency

Intermodal Network Concepts

Improving Process Efficiency

International Best Practice of a Near-Dock Facility

Problem 1: Box handling

Box handled multiple times (i.a. shuffle moves) → increased operating cost

Solution 1: Coordinated procedures for container exchange

E.g. pool of trucking companies to dray a pool of containers → shuffle moves and operating cost can be reduced significantly

Problem 2: Congestion

Traffic situation causes delays and non-reliable service

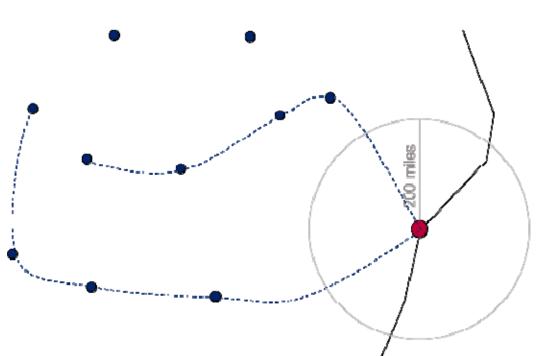
Solution 2: Dedicated truck road for container exchange

Reliable container exchange is possible by avoiding congestion

- → Coordinated approach can help to improve efficiency
- → But: requires infrastructural capacity to achieve reliability
- → And: information exchange must be built in the planning processes
 © HPC Hamburg Port Consulting GmbH

Background HPC

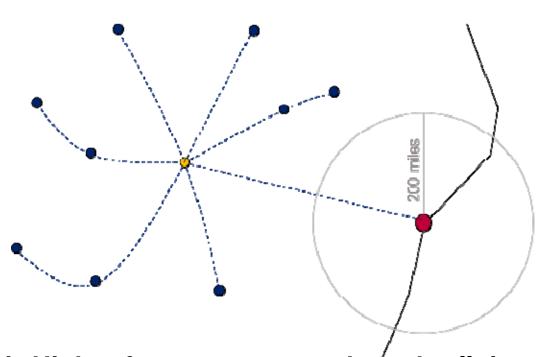
Developments in Global Transport


Port-Rail Connectivity

Improving Process Efficiency

Intermodal Network Concepts

"Milk run" Train



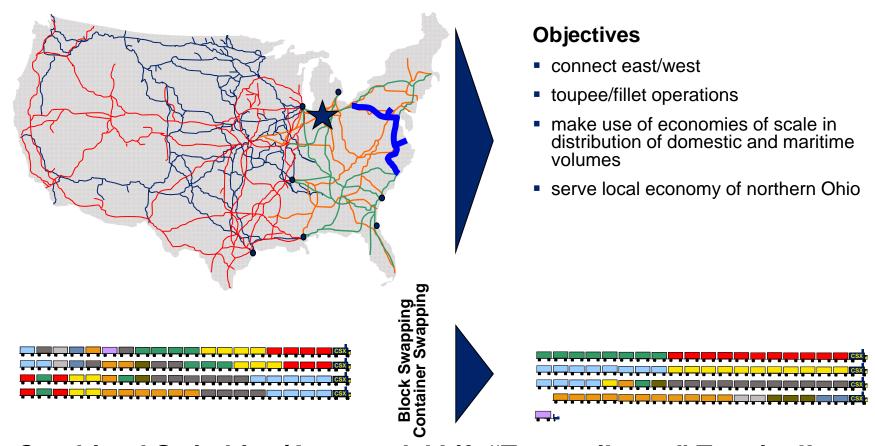
Effects:

- Long train travel times
- Requires high sorting efforts in the port for import trains
- Some origins/destinations might not be served
- Possibly issues with reliability of schedule
- → Depending on the number of destinations, train building for import containers can be very challenging and time consuming
- → Some markets are not served due to lack of volume

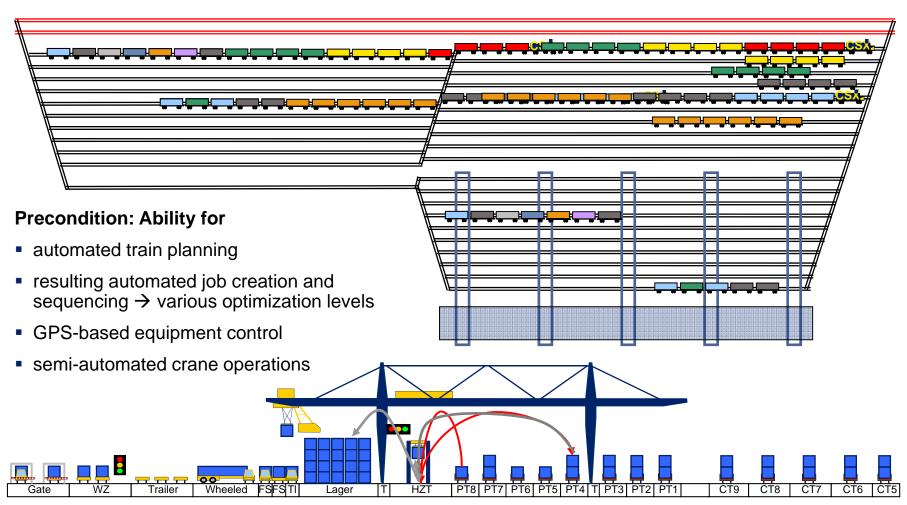
Hub Network

Effects:

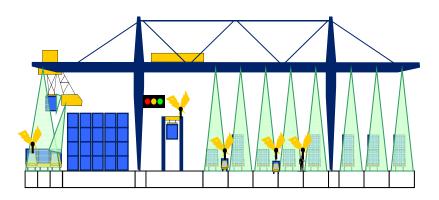
- Higher frequency possible due to volume consolidation
- Sorting efforts for import trains can be reduced
- More origins/destinations can be served
- Less schedule deviations expected
- → Higher frequency can reduce dwell time in port
- → Train building can be performed more efficiently, leads to higher capacity


Existing Terminal Networks

→ Existing terminals are not designed to serve as hubs!


Example: CSX NWOH – A True Intermodal Hub

→ Combined Switching/Intermodal Lift "Transrailment" Terminal!



Example: CSX NWOH – A True Intermodal Hub

Example: CSX NWOH – A True Intermodal Hub

- Automated collision/overrun with load control between cranes, SCs, grunts, M&R crews and moving trains
- Auto-gates and system based truck-to-crane order calls

- Automated railcar recognition in approach to terminal, in ladder and in entrance to process tracks
- Automated container recognition
- Railcar tracking in entire facility
- Automated train-set position calibration

→ Tailored Planning Process including Simulation and Process Optimization Ensured Feasibility of Hub Functionality and finally Operations Success!

Example: Hamburg – Metrans and Polzug

Description of System

- Long distance private operator rail transport to Eastern Europe and Southern Germany
- Founded by terminal operator as part of horizontal integration strategy
- Full trains operate between port and inland terminals
- Various dedicated rail terminals aand hub terminals in Poznan, Ceska Trebova and Prague
- Regular connection/service to Bremerhaven, Hamburg and Rotterdam

Driver / Initiator

- Improvement of hinterland connectivity and transport duration between port and market.
- Part of horizontal integration strategy

Capacity Factors

 Lack of information sharing from cargo owners/forwarders limits the potential to move containers quickly to inland facilities. Dwell time for rail is not shorter than for trucks.

Emission Reduction

• Electrically powered rail transport is assumed to result in 48.1g CO2 per tkm, a 70% reduction over trucks.

Traffic Impact

- Approx. 25% of Hamburg port volumes some 2.3m TEU
 are transported by rail
- Around 1.2m truck visits are avoided

Efficiency Factors

- Additional moves on seaport and inland terminal long travel distance saves significant trucking fees
- Railway connection faster to market than trucking

Summary

Benefits from well-integrated rail network:

- Reduced road congestion
- Emission reduction
- Rail connection faster to market than trucking
- Substantial trucking fees can be saved

Requirements:

- Network and facilities need to be designed to support
- Coordination and information sharing is key to successful implementation

HPC Hamburg Port Consulting GmbH

Contact Details

With courtesy of CSX Intermodal Terminals Inc.

HPC Hamburg Port Consulting GmbH
Christoph Schoppmann
Container-Terminal Altenwerder
Am Ballinkai 1
D-21129 Hamburg
Germany

Phone: +49 40 74008 242

Fax: +49 40 74008 133

c.schoppmann@hpc-hamburg.de