Beyond the Seaport: Assessing the Impact of Policies & Investments on the Transport Chain

MAERS

Researchers

Mamoun Toukan

- Business Development Director at Arab Transit
- Master of SCM '18 from MIT
- Bachelors in Finance & Economics '11 from University of Toronto

Queenie Chan

- MBA '19 from The Chinese University of Hong Kong
- Master of SCM '18 from MIT
- Master of China Business '11 from Hong Kong Polytechnic University
- Previous work: OOCL for 10+ years

Advisors

Dr. Christopher Mejia Argueta

- Director, MIT SCALE Network -Latin America
- Director, MIT Graduate Certificate in Logistics and SCM (GCLOG) program
- Director, MIT Food and Retail Operations Lab

Dr. Nima Kazemi

- MIT Postdoctoral Research Associate, Center for Transportation and Logistics
- Leading Specialized Courses for MIT Graduate Certificate in Logistics and SCM (GCLOG) and SCM residential program

Toukan & Chan 2018

Objective

[To develop a framework that assess the impact of **policy** and **investment** decisions on the inland **transport chain**.]

Agenda

Background

Case Study: Jordan

Building the Framework

 \rightarrow Conceptual Model

 \rightarrow Simulation Model

Simulation Runs

Conclusion

Questions & Comments

Background

Seaport Plays an Vital Role in Global Trade

Source: WTO, 2017

Source: Review of Maritime Transport, 2017

Beyond the Seaport

Industry Aiming at Moving Cargo Faster, and More Efficiently

Mega ships & Alliances: Fast Operation Needed Vertical Integration: Hinterland Investments Technology : Blockchain

Number of Interactions Increase Complexities

Toukan & Chan 2018

Beyond the Seaport

Case Study: Jordan

Jordan's Inbound Containerized Trade Growing Over Past 10 Years

Case Study

Fewer Ships with Bigger Volumes. Positive Throughput Growth from 07 – 13, then Dropped

Toukan & Chan 2018

Beyond the Seaport

In-Transit Containers was 25% of Imports in 2012, Today it's at <2%, BUT Exports are Rising

Case Study

Domestic Imports↑In-Transit Containers↓Full Container Exports↑

Logistics Performance Index: Ranks Jordan 67 in 2016

Reasons for Improving Jordan's Transport Chain

- Regional shifts impact containerized trade volumes.
- Due to it's geo-political location, Jordan has the potential to act as a transit hub.
- Jordan has one access point to the sea.
- Jordan's LPI ranking is low, and has gotten worse.

How Should We Asses the Impact of New Initiatives/ Policies?

- Reduction of import dwell time by reducing documentation processing time.
- Establishment of a dry port outside of Aqaba.
- Rail project

Building the Framework

System Dynamics

- A methodology for studying and managing **complex feedback systems**.
- Identifies the underlying structure of a system to gain insights into behaviors, focusing on the interactions between components of a system.
- Allows decision makers to design policies that seek to **eliminate unwanted** patterns of behavior.

Building the Framework

The Framework Follows 4 High Level Steps

Beyond the Seaport

The Import Process Overview

Toukan & Chan 2018

Beyond the Seaport

Conceptual Model

Simulation Model

Simulation Model

Assumptions are Made to Simplify the Model

One size and type of containers

Terminal productivity is at 100%, unless yard gets fully congested

One size and type of trailers

Empty containers for export bookings are picked up from container depots

Third order delay assumed in documentation processing

Vessel load capacity = discharged containers

Simulation Model

The Model's Backbone: 4 Subsystems Limited by 2 Main Constraints

What the Model Actually Looks Like ?

Beyond the Seaport

Simulation Model

Simulation Model

Simulation Runs

Simulation Runs

Simulation Setup

Alternative Policies Parameters

Time Line: 30-days | One Ship Arrival | 1,375 Containers

* A hypothetical terminal, all numbers here may not present reality, the aim is just to show how the model works

Scenario Analysis Parameters

Time Line: 30-days | One Ship Arrival | 1,375 Containers

 Terminal Capacity = 40,000 Containers

• Fleet Size = 4,000 Trailers

- Max Daily Document
 - = 700 Documents

Terminal Capacity = 1,000 Containers

Fleet

capacity

88%

Max Daily Documents = 150 Documents

Simulation Runs Base Scenario: Containers in Terminal Yard

Simulation Runs

Base Scenario: Trailers Utilization

Simulation Runs

Base Scenario: Delivery Time

Combo Achieved Highest Rank in Base Scenario

- Dry port reduces the dwell time, but not delivery and turnaround time.
- Tech reduces the delivery time and turnaround compared to Dry port .

Simulation Runs

Yard

capacity

98%

Combo Achieved Highest Rank in Limited Terminal Capacity

- The Current and Tech rejected some containers due to space.
- Dry Port and Combo were able to accommodate more containers.

Toukan & Chan 2018

Beyond the Seaport

Tech Achieved Highest Rank in Limited Fleet Size

• The dry port alternatives, Dry Port and Combo had a greater utilization of trucks, resulting in higher container turnaround time.

Simulation Runs

Fleet

capacity

88%

Simulation Runs

Doc.

Capacity

78%

Combo Achieved Highest Rank in Limited Documentation Capacity

- Tech and Combo achieved fastest container turnaround, and delivery times.
- Current and Combo had the highest fleet utilization.

Combo Achieved the Highest Rank, No Surprise!

Simulation Runs

What happens over a longer time period?

Simulation Output: 365 Days Crisis on Day 275

Simulation Runs

Status Quo vs. Combo

Terminal Capacity: 82500 CNTRs Fleet Size: 4000 Trucks Daily Ship Arrivals

Day 275:

- Max capacity reached.
- 1. Empty containers couldn't gate in
- 2. To load exports, imports must first discharge
- 3. Vessels couldn't discharge
- 4. Terminal yard completely block.

No. of containers in the yard kept piling up, as trailers couldn't keep up with the number of moves.

Simulation Output: 365 Days Problem Solved by 个 Fleet

Simulation Runs

Terminal Capacity: 82500 CNTRs Fleet Size: 5000 Trucks Daily Ship Arrivals

- By increasing the fleet size, the build-up of containers in the yard was reduced.
- Lower daily yard utilization to an average of 4%.
- A desirable outcome to the status quo.

Conclusion

Moving Forward: Using the Model in Practice

- Run the model with **real-data** and create a goodness of fit.
- **Relax** certain assumptions, to gain additional insights.
- Factor in **financial implications**.
- Develop a web-base easy to use **interface** for decision makers.
- The model is just a supportive tool, humans make the final decision.

Look Beyond the Seaport & Take a Holistic View

- Encourages **collaboration** between stakeholders.
- Support decision makers in selecting the decisions the will **improve** the **overall** container transport chain.
- Evaluates the current container transport chain under different scenarios.
- Encourages a **proactive** approach in planning.

Questions & Comments

mamoun@alum.mit.edu

