

#### INTERMODAL AFRICA 2021 "Shaping the Next Generation of Port Industry Through Technology And Automation"

26<sup>th</sup> – 28<sup>th</sup> October 2021

Dr. Denis Njumo Atehnjia Provost Regional Maritime University





### **Regional Maritime University**

The Regional Maritime University is a tertiary Institution offering Maritime Education & Training. The University is jointly governed by 5 countries: Cameroon, The Gambia, Ghana, Liberia and Sierra Leone.





















































Drill Fluids Lab



















**AN INTEGRATED FUZZY MULTIPLE CRITERIA DECISION-MAKING MODEL FOR THE SELECTION OF TUGBOATS IN PORTS IN WEST AFRICA** 

> DR DENIS N. ATEHNJIA WUNI G.YAMSOM BAENA BANEEQUAYE SAMUEL OTOO





## Agenda

- Introduction
- Problem Statement
- Critical Review
- Tugboat Accidents
- Framework
- Methodology
- Findings

### Introduction

+

0

Tugboats are small boats that are used to maneuver larger vessels by pushing or pulling them with a towline or by direct contact

Tugboats allow for faster and safer port maneuvering, resulting in a speedier flow of commodities through the port

### Problem Statement

+

0

Tugboat selection for suitable operation in ports is a difficult problem that necessitates the simultaneous evaluation of several criteria

# **Critical Review**

+

0

Fuzzy-AHP for the Selection of a Suitable Tugboat Based on Propulsion System Type Fuzzy VIKOR Method for the Evaluation and Selection of a Suitable Tugboat

### **Critical Review**

Fuzzy-AHP for the Selection of a Suitable Tugboat Based on Propulsion System Type

- Architecture, operational and financial parameters
- The propulsion or maneuvering systems used in tugboats were examined
- A fuzzy analytical hierarchy process was used to generate an algorithm for the selection

Fuzzy VIKOR Method for the Evaluation and Selection of a Suitable Tugboat

- Specifications for tugboats were accessed by subject experts
- Fuzzy Shannon Entropy was used to measure the weights of each criterion and Fuzzy VIKOR was used to rank the alternatives
- Best tugboat was selected for effective decision making

Ο

# **Tugboat Accidents**

+

0

Analysis of accident for the development of an appropriate tug selection framework

### Tugboat Accidents - I

#### Tug capsizes in Frazer Rivers

North Arm Ventures Capsizes



 $\mathbf{O}$ 

### Tugboat Accidents - II

#### Stewards Tug Grounding



Fairplay 22 Tug Collapse



0

# Tugboat Selection



### Framework

|           | Criteria       | Definitions                                                    |  |  |
|-----------|----------------|----------------------------------------------------------------|--|--|
| C1        | Bollard pull   | It is the measure of the pulling power of a tug                |  |  |
| C2        | Safety         | Refers to the stability of the tug during towing operations    |  |  |
| C3        | Economic       | Involves the initial investment cost and the overall operating |  |  |
|           | Aspect         | costs of the tug                                               |  |  |
| C4        | Seakeeping     | The ability of the tug to withstand adverse sea conditions     |  |  |
| C5        | Hull Structure | The characteristic design of the hull form including the size  |  |  |
|           |                | and the length                                                 |  |  |
| C6        | Power          | Power systems are dependent on the propulsion systems          |  |  |
|           | Systems        | whether mechanical, electrical or hybrid                       |  |  |
| C7        | Tank Capacity  | The volume or capacity of all the tanks on the tug             |  |  |
| <b>C8</b> | Port factors   | It includes the draft requirement, the geographical location   |  |  |
|           |                | and the technological equipment at ports                       |  |  |
| С9        | Speed          | The maximum and/ or service speed of the tug                   |  |  |
| C10       | Deck           | The size of the deck area and the arrangement or positions of  |  |  |
|           | arrangement    | the towing equipment                                           |  |  |

2021

+

0

# Methodology - I

| Determine<br>the weights<br>of the<br>evaluation<br>criteria | Develop the<br>fuzzy decision<br>matrix | Calculate the<br>normalized<br>fuzzy decision<br>matrix | Then,<br>compute the<br>weighted<br>normalized<br>fuzzy decision<br>matrix | Identify FPIS<br>and FNIS |
|--------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|
| Step 1                                                       | Step 2                                  | Step 3                                                  | Step 4                                                                     | Step 5                    |

# Methodology - II

| The distance of each<br>alternative from FPIS<br>and FNIS | Obtain closeness<br>coefficient and<br>improve alternatives | Rank the alternatives |
|-----------------------------------------------------------|-------------------------------------------------------------|-----------------------|
| Step 6                                                    | Step 7                                                      | Step 8                |

### Equations Step 4 - 7

$$\widetilde{D} = \begin{array}{c} A_1 & C_1 \cdots C_n \\ \vdots & \ddots & \bar{x}_{1n} \\ \vdots & \ddots & \vdots \\ \bar{x}_{m1} & \cdots & \bar{x}_{mn} \end{array} \right], i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

 $v_{ij} = \tilde{r}_{ij} \times \omega_j$ 

$$A^{+} = (\tilde{v}_{1}^{*}, \tilde{v}_{2}^{*}, \dots, \tilde{v}_{n}^{*}), \text{ where } \tilde{v}_{j}^{*} = \max_{i} \{v_{ij^{3}}\}$$

$$A^{-} = (\tilde{v}_{1}^{-}, \tilde{v}_{2}^{-}, \dots, \tilde{v}_{n}^{-}) where \ \tilde{v}_{j}^{-} = min_{i} \{v_{ij1}\}$$

$$\tilde{r}_{ij} = \left(\frac{a_{ij}}{c_j^*}, \frac{b_{ij}}{c_j^*}, \frac{c_{ij}}{c_j^*}\right) and c_j^* = max_i \{C_{ij}\} (benefit criteria)$$

$$\tilde{d}_{i}^{+} = \sum_{j=1}^{n} d\left(\tilde{v}_{ij}, \tilde{v}_{j}^{*}\right), i = 1, 2, ..., m; j = 1, 2, ..., n$$
$$\tilde{d}_{i}^{-} = \sum_{j=1}^{n} d\left(\tilde{v}_{ij}, \tilde{v}_{j}^{-}\right), i = 1, 2, ..., m; j = 1, 2, ..., n$$

$$C\widetilde{C}_{i} = \frac{\widetilde{d}_{i}^{-}}{\widetilde{d}_{i}^{+} + \widetilde{d}_{i}^{-}} = 1 - \frac{\widetilde{d}_{i}^{+}}{\widetilde{d}_{i}^{+} + \widetilde{d}_{i}^{-}}, i = 1, 2, ..., m$$

### Results - I

#### **Combined decision matrix**

|            | A1        | A2        | A3        | A4        |
|------------|-----------|-----------|-----------|-----------|
| C1         | 5,7.667,9 | 3,6.333,9 | 3,5,7     | 3,5,7     |
| C2         | 3,7,9     | 1,4.333,7 | 5,7,9     | 5,7,9     |
| C3         | 3,6.333,9 | 1,3.667,7 | 5,7.667,9 | 5,8.333,9 |
| C4         | 3,5.667,9 | 5,6.333,9 | 1,4.333,7 | 1,4.333,7 |
| C5         | 3,6.333,9 | 1,4.333,7 | 3,5,7     | 3,5.667,9 |
| C6         | 3,6.333,9 | 3,6.333,9 | 5,7.667,9 | 5,7,9     |
| <b>C</b> 7 | 3,5.667,9 | 3,5.667,9 | 5,7,9     | 3,5.667,9 |
| C8         | 3,5,7     | 3,5.667,9 | 3,5,7     | 1,4.333,7 |
| С9         | 3,6.333,9 | 3,5,7     | 3,6.333,9 | 3,7.667,9 |
| C10        | 3,5,7     | 3,5.667,9 | 3,5,7     | 3,5.667,9 |

#### **Combine weightage matrix**

|     | ω         |
|-----|-----------|
| C1  | 5,7.667,9 |
| C2  | 5,7.667,9 |
| C3  | 3,6.333,9 |
| C4  | 3,5.667,9 |
| C5  | 3,5.667,9 |
| C6  | 3,5.667,9 |
| C7  | 3,5,7     |
| C8  | 3,5.667,9 |
| C9  | 3,5.667,9 |
| C10 | 1,4.333,7 |

+

0

### Results - II

#### **Normalized fuzzy** decision matrix

A2 A4 A1 C1 5 7.667 9 3 6.333 9 3 5 7 3 5 7 9' 9 '9 9' 9 '9 9'9'9 9'9'9 C2 579 379 1 4.333 7 579 9'9'9 9' 9'9 9'9'9 9'9'9 C3 1 1 1 1 1 1 1 1 1 111 9'6.333'3 9'7.667'5 9'7'3 7'3.667'1 C4 3 5.667 9 5 6.333 9 1 4.333 7 1 4.333 7 9' 9'9 9' 9'9 9' 9'9 9' 9'9 **C**5 3 6.333 9 1 4.333 7 357 3 5,667 9 9'9'9' 9' 9'9 9'9'9 9' 9'9 C6 3 6.333 9 3 6.333 9 5 7.667 9 579 9' 9'9 9' 9 '9 9' 9 '9 9'9'9 **C7** 3 5.667 9 3 5.667 9 579 3 5.667 9 9' 9'9 9' 9 '9 9'9'9 9' 9 '9 **C**8 357 3 5.667 9 3 5 7 1 4.333 7 9'9'9 9'9'9 9' 9 '9 9' 9'9 C9 3 6.333 9 3 6.333 9 3 5 5 3 7.667 9 9'9'9 9' 9 '9 9' 9 '9 9' 9 '9 C10 3 5 7 3 5.667 9 3 5 7 3 5.667 9 9'9'9 9'9'9 9' 9 '9 9' 9'9

A3

### Results - III

### Weighted normalized decision matrix

|     | A1                | A2            | A3                | А4              |
|-----|-------------------|---------------|-------------------|-----------------|
| C1  | 2.778,6.531,9     | 1.667,5.395,9 | 1.667,4.259,7     | 1.667,4.259,7   |
| C2  | 1.667,7,9         | 0.556,3.691,7 | 2.778,7,9         | 2.778,7,9       |
| С3  | 0.333,1,3         | 0.429,1.727,9 | 0.333,0.826,1.8   | 0.333,0.760,1.8 |
| C4  | 1,3.568,9         | 1.667,3.988,9 | 0.333,2.728,7     | 0.333,2.728,7   |
| C5  | 1,3.988,9         | 0.333,2.728,7 | 1,3.148,7         | 1,3.568,9       |
| C6  | 1,3.988,9         | 1,3.988,9     | 1.667,4.827,9     | 1.667,4.408,9   |
| C7  | 1,3.148,7         | 1,3.148,7     | 1.667,3.889,7     | 1,0.630,7       |
| C8  | 1,3.148,7         | 1,3.568,9     | 1,3.148,7         | 0.333,2.728,7   |
| С9  | 1,3.988,9         | 1,3.148,3.148 | 1,3.988,9         | 1,4.828,9       |
| C10 | 0.333,2.407,5.444 | 0.333,2.728,7 | 0.333,2.407,5.444 | 0.333,2.728,7   |
|     |                   |               |                   |                 |

#### **FPIS and FNIS**

|     | $A^+$         | A <sup></sup>     |
|-----|---------------|-------------------|
| CI  | 2.778,6.531,9 | 1.667,4.259,7     |
| C2  | 2.778,7,9     | 0.556,3.691,7     |
| C3  | 0.429,1.727,9 | 0.333,0.760,1.8   |
| C4  | 1.667,3.988,9 | 0.333,2.728,7     |
| C5  | 1,3.988,9     | 0.333,2.728,7     |
| C6  | 1.667,4.827,9 | 1,3.988,9         |
| C7  | 1.667,3.889,7 | 1,0.630,7         |
| C8  | 1,3.568,9     | 0.333,2.728,7     |
| C9  | 1,4.828,9     | 1,3.148,3.148     |
| C10 | 0.333,2.728,7 | 0.333,2.407,5.444 |

+

0

### Closeness

|     | $d_i^*$ | $d_i^-$ | CC <sub>i</sub> | Rank |
|-----|---------|---------|-----------------|------|
| A 1 | 8.363   | 13.458  | 0.6167          | 1    |
| A 2 | 9.620   | 13.841  | 0.5900          | 2    |
| A 3 | 11.452  | 9.503   | 0.4535          | 3    |
| A 4 | 10.639  | 8.771   | 0.4535          | 4    |



The way to get started is to quit talking and begin doing

Walt Disney

## Findings

#### **Findings** I

 The most important criteria considered in the selection of tugboats are *safety* and *bollard pull*

#### **Findings II**

 The A1 of tugs was most suitable as in this illustrative example with inputs from three experts from West Africa



Ο

## Summary

This presentation outlines numerous aspects in the selection of an appropriate tugboat for port operations

As a guide, this proposed decision model may be used by ports authorities and organizations working in tugboat selections ports in West Africa to enhance safety and maximize operational efficiency



2021

### THANK YOU

REGIONAL MARITIME UNIVERSITY

+

0

DR DENIS ATEHNJIA provost@rmu.edu.gh www.rmu.edu.gh

Real Property in

in an in the second