

Performance measurements in port communities

A focus on container terminal operations in increasing competition levels

Agenda

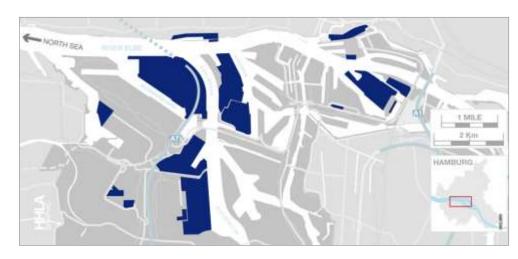
Background HPC

Background Port Performance

Performance Measurement

Example: Intermodal Connectivity

Background HPC


Company Information

HPC:

- Founded in 1976 as subsidiary of HHLA Hamburger Hafen und Logistik AG
- Around 100 experts, annual turnover in 2016: approx. EUR 15 million
- Since 1976 port and transport-related projects in more than 100 countries, both in the private and public sector
- Approx. 1,400 projects world-wide with extensive experience in container terminal planning

Mother-Company HHLA:

- •3 container terminals in Hamburg, capacity +10 mill TEU p.a.
- •Multipurpose and bulk terminals
- Intermodal transport
- Logistics services

Background HPC

Services

Our Focus

- Ports
 - Container terminals
 - Bulk terminals
 - Cruise ship terminals
- Logistics facilities
 - Rail terminals
 - Inland ports
 - Intermodal facilities

Our Clients

- Private terminal operators, port authorities & public institutions
- Governments
- Logistics service providers
- Banks and private investors
- International organisations, such as World Bank, Development Banks, UN, etc.

Agenda

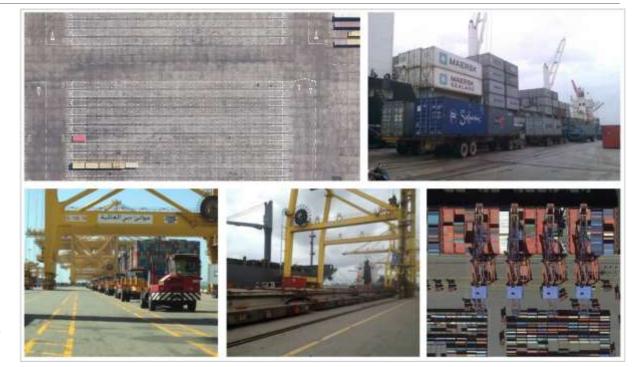
Background HPC

Background Port Performance

Performance Measurement

Example: Intermodal Connectivity

Background Port Performance


Overview

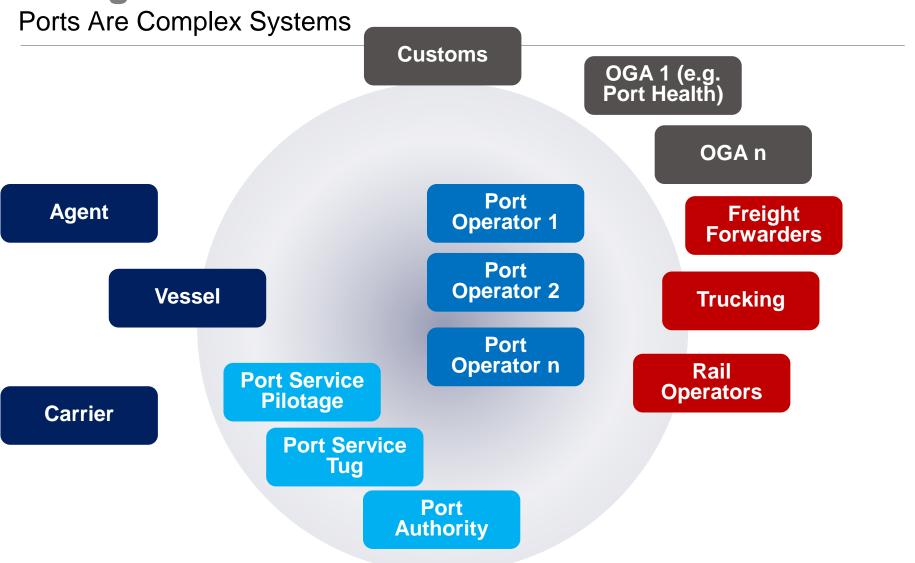
Port

- Transport infrastructure
- Port community
- Public agencies
- Private enterprises
- Multiple roles

Performance

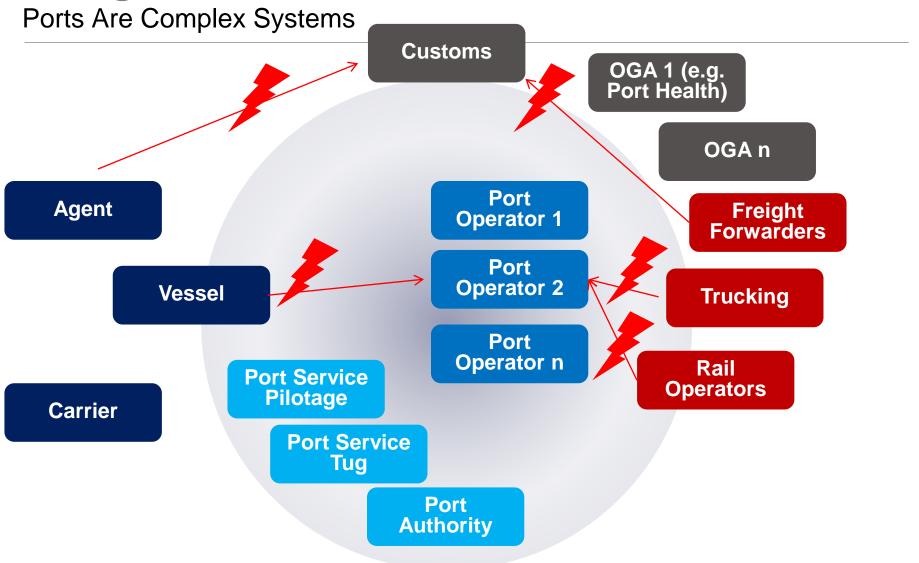
- When: Service to clients Whose clients?
- Where: At certain interfaces

Problem


- Performance subject to multiple interdependencies
- Performance is often subject to contracts (SLAs)
- Performance often determined by legislative requirements (e.g. customs)

Dimensions

- Service performance
- Financial performance



Background Port Performance

Background Port Performance

Agenda

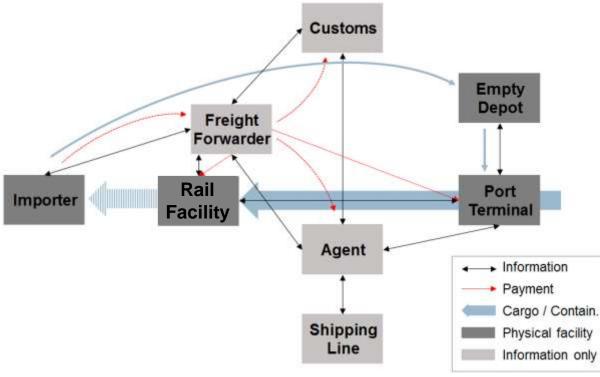
Background HPC

Background Port Performance

Performance Measurement

Example: Intermodal Connectivity

Process-Based Approach


Target

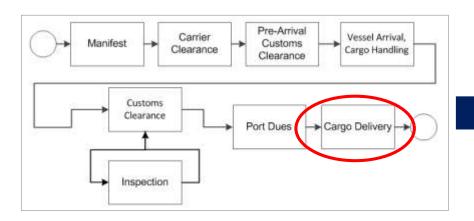
- Port-wide Performance Measurement System
- Drilling deeper than existing dashboards or Port Regulators' reports

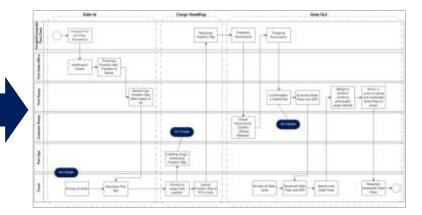
Stakeholder engagement

Requirement

 Beginning with detailed process analyses **Process scheme: Import via Rail Facility**

Process-Based Approach


Managing complexity


- Multitude of processes
- Complexity of procedures
- High degree of variability

Individual port profiles: Selection of relevant cargo trades

Identifying Core Performance Areas

Vessel Servicing

Dwell Time

Truck / Train Servicing

Why relevant

Vessel costs Schedule maintenance Berth capacity

Drivers

Vessel delays (other ports)
Weather
Marine services
Berth availability
Terminal performance

Why relevant

Cargo availability Capital lockup (cargo) Yard capacity

Drivers

Manifest and clearing processes:
Freight forwarder, customs, OGAs
Risk management and inspections

Why relevant

Logistics costs Hinterland capacity (rail) Terminal capacity (trucks)

Drivers

Processes in port operations
Traffic (inside / public roads)
Fraud / theft prevention, security processes

Principles for Defining KPIs and Targets

Relevance

- Measurements that contribute to the project and describe core processes
- Ignore marginal activities

Practicability

- Measurements feasible to implement with a view to resources
- Measurements for which data will be available in a workable format, i.e. electronically transmittable with standard protocols

Sustainability

- Measurements that are maintainable in the future, i.e. data should be used from sources that are not project dependent but stable, e.g. Single Window, TOS
- Reduce number of measurements to avoid effects of weariness in the port community

Expectations

Conditions

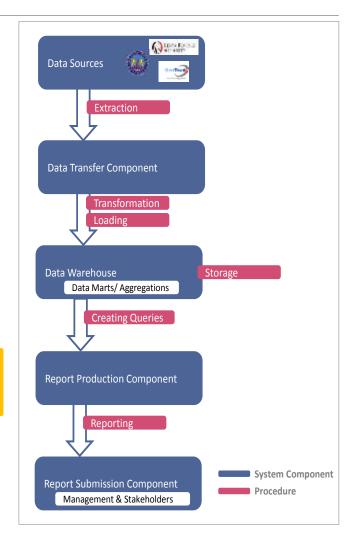
Feasible KPIs

Systematic Setup

Implementing port performance monitoring

- Sources
 - Data generation / extraction and provision
- Data processing entity
 - Check integrity
 - Transfer / alter data
 - Load
 - Compute KPIs
 - Generate Reports
 - Distribute / communicate reports

KPI measurements do not


- provide explanations
- provide instruction how to improve

3. Port community

Data interpretation

Derive improvement measures

Which Way To Go For Responsible Authority?

Co-Operation vs. Regulation

Possible means of co-operation

- Transparent communication of KPIs
- Shared analyses of root causes
- Port meetings, website

Effects of co-operation

- Jointly identifying weaknesses
- Improving individual performance to optimize system competitiveness

Role of Monitoring

- Providing intelligence
- Facilitating transparency and dialogue
- Driving process of change within port community

Possible means of <u>regulation</u>

- Penalty payments
- License withdrawal

Effects of such regulation

- Defensive approach data sharing
- Protective interpretation of KPIs in port meetings
- Fingerpointing since performance can have multiple causes
- Law cases filed against regulator
- Deadlock situation

Benefits of Collaborative Approach

- Port Authorities in Rotterdam, Hamburg and others have established means for information sharing and are constantly expanding the horizon of data provision and communication.
- Likewise, private sector initiatives, such as truck appointment systems aim at improving a problematic situation for all involved parties.

- The Oversight Function should be interpreted in the same direction: **Providing** information, highlighting weak points in performance and being an incubator for improvement campaigns.
- Exerting the Oversight Function in such a **collaborative manner** would secure the port community's support.

Agenda

Background HPC

Background Port Performance

Performance Measurements

Example Performance Improvement: Intermodal Connectivity

Example: Intermodal Connectivity

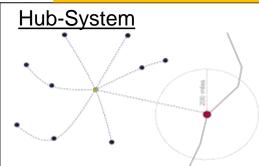
Hamburg – Metrans/Polzug

Description of System

- Long distance private operator rail transport to Eastern **Europe and Southern Germany**
- Founded by terminal operator as part of vertical integration strategy AFTER PERFORMANCE ANALYSIS
- Full trains operate between port and inland terminals
- Various dedicated rail terminals and hub terminals in Poznan, Ceska Trebova and Prague
- Regular connection/service to Bremerhaven, Hamburg and Rotterdam

Driver / Initiator

- Improvement of hinterland connectivity and transport duration between port and market.
- Part of vertical integration strategy


Capacity Factors

- Lack of information sharing from cargo owners/forwarders limits the potential to move containers quickly to inland facilities. Dwell time for rail is not shorter than for trucks.
- Coordination of information in supply chain created in order to increase capacity and reduce cost.

Emission Reduction

Electrically powered rail transport is assumed to result in 48.1g CO2 per tkm, a 70% reduction over trucks.

AFTER PERFORMANCE ANALYSIS

Effects:

- Higher frequency possible due to volume consolidation
- Sorting efforts for import trains can be reduced
- More origins/destinations can be served
- Less schedule deviations expected
- → Higher frequency can reduce dwell time in port
- → Train building can be performed more efficiently, leads to higher capacity

Traffic Impact

- Approx. 25% of Hamburg port volumes some 2.3m TEU are transported by rail
 Around 1.2m truck visits are avoided

Efficiency Factors

- Additional moves on seaport and inland terminal long travel distance saves significant trucking fees
- Railway connection faster to market than trucking

Summary

Requirements to improve performance:

- Measure the "right" things to learn the lessons and develop improvement options
- Transparency, coordination and information sharing is key to successful performance analysis
 AND improvement
- Example Intermodal connection:
 - Hub network idea developed based on analysis of rail performance

Benefits from performance measurement approach:


- Deep understanding of processes and potential constraints to port development
- Basis for achieving improvements in port performance and therefore competitiveness
- Example Benefits from efficient intermodal connections:
 - Reduced road congestion, emission reduction
 - Rail connection faster/more reliable to market than truck

HPC Hamburg Port Consulting GmbH

Contact Details

HPC Hamburg Port Consulting GmbH
Christoph Schoppmann
Container-Terminal Altenwerder
Am Ballinkai 1
D-21129 Hamburg

Phone: +49 40 74008 242

Germany

Fax: +49 40 74008 133

c.schoppmann@hpc-hamburg.de