

The Digital Port

-*As a base for Big Pictures to Revolutionize your Processes*

BALTIC PORTS AND SHIPPING 2021

Maritim Seehotel Timmendorfer Strand, Germany Tuesday 21 to Thursday 23 September 2021

1 C. V. 100

AKQUINET port consulting

Prof. Dr. Holger Schütt

30 years of port, terminals and automation experience.

Researcher at Institute of Shipping Economics and Logistics

Professor at University of Applied Sciences Bremerhaven

CHESSCON

Some 30 years of simulation, emulation and optimization experience.

Norbert Klettner

Over 15 years of port, terminals and TOS experience.

AKQUINET Is the largest independent and owner-run IT company in the German-speaking world. Trustworthy In cooperation, flexible in action, human in co-operation, socially responsible.

AKQUINET is focused on different industries such as health care, public and logistics with ports& terminals. These strength are combined into an overall digitization approach with Industry 4.0 teams.

AKQUINET port consulting – taking care of the full lifecycle!

akquinet

References Worldwide with CHESSCON

APM Terminals; global HQ **ASEAN Terminals, Philippines** Bejaia Mediterranean Terminal, Algeria Bromma, Singapore Centerm Terminal, Vancouver, Canada Contship, La Spezia, Italy CSX, Jacksonville, USA DP World Terminal Antwerp, Europe DP World, Australia EUROGATE, Germany HHLA, Hamburg, Germany HPA Hamburg Port Authority, Germany HIT, Hong Kong JadeWeserPort, Germany Cargotec / Kalmar Industries, Finland CMSA ICTSI, Manzanillo, Mexico Marport, Turkey MCT, Gioia Tauro, Italy MTL, Hong Kong

Nhava Sheva Terminal, India Noell Crane Systems, Germany NTB, Bremerhaven, Germany P&O Headquarter, London, Europe Port of Tacoma, USA PORTEK International Ltd., Singapore Ports America, North America **PSA International, Singapore** Red Sea Gateway Terminal, Jeddah, KSA Sandwell Eng. Inc., Vancouver, Canada SPIA ICTSI, Columbia Tata Consultancy Services, India TecPlata ICTSI, Buenos Aires, Argentina TIL - Terminal Investment Ltd, Netherlands TotalSoftBank, Korea TPT, Durban, South Africa TRP, Buenos Aires, Argentina VTE, Genoa, Italy Warsteiner Brewery, Germany

9

Starting in the 90-ies

→ Terminal planning and design strategical planning

Optimization software for container akquinet terminals

11

Post - Millenial

→ Terminal Start-Up and Operation tactical planning

Nowadays

→ Forecasting the coming operation operational planning

Definition

Digital Twin

- ... is a digital representation of a real-world entity or system. (Gartner IT)¹
- ... is a virtual representation of a physical product or process, used to understand and predict the physical counterpart's performance characteristics.²
 (Performance Digital Twins: Using digital twins capture, analyze, and act on operational data)
- The concept and model of the Digital Twin was publicly introduced in 2002 by Dr. Michael Grieves, then of the University of Michigan, at a Society of Manufacturing Engineers conference in Troy, Michigan[20]. The concept which had a few different names was subsequently called the Digital Twin by John Vickers of NASA in a 2010 Roadmap Report[21].

The Digital Twin consists of three parts:

- The physical product,
- the virtual product, and
- the connection between the two products.

^{1: &}lt;u>https://www.gartner.com/it-glossary/digital-twin/</u>

^{2:} https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465

^{3:} https://en.wikipedia.org/wiki/Digital_twin

Digital Twin

- To build the digital Twin
- use the emulation model
- connect it to the TOS (listen only) and the equipment (\rightarrow Live View)
- use fast simulation module to forecast operation

ی 🛥 💿

 \times

_

X

File Edit Camera Options Help

1000

💿 🖻 🕥

File Edit Help

Row	list I	Distance	Res	tow l
Item	Filter	Row F	ilter	Select
De	Value			
ld	MOT	U071947	3	
ISO	45G1			
Leng	40			
Heigl	2.89			
Weig	29300	0		
Area	CC2			
Х	CC20	3		
Y	13			
Z	2			
Flow	EXPO	ORT		
	F			
Arriva	TRUC	CK		
Depa	DCT3	8041		
Coloi	-1			
AMC	TRUC	CK		
APO	SIN			
BKN	27401	14538234	1	
BXS ⁻	FB			
CLC	Y			
CON				
DES'				
DMG				
DMC	VESS	SEL		
DPR'	SIN			
DSG				
DWT	607			
EQC	4500			
				01
				Ciea

_32

Operating time

Waiting time

Productivity

Open jobs

Intern

Locks

Reset all data

0

Rail

0

0

Gray list

Last job

1:04:06

0:01:17

0:00:58

5,6 Ct

0

Comparison

	Scenario	Decisions	Level of detail	Speed	Application
Simulation	to be defined	internal light TOS	low - medium	very high	strategic
Emulation	defined in TOS	real TOS	very high	low (due to TOS-coupling)	tactical
Digital Twin	permanently updated by TOS	internal light TOS using real TOS parameters	high	high	operational

(Semi) Automated DIGITAL TWIN Creation

akquinet

Applications

Calibrating the simulation model by analysing the behaviour of the real world

- listen to the real world
- analyse the behaviour and find changes
- evaluate parameters of the real objects (e.g. productivity of manned devices → learning curve)
- adapt these changes to the emulators of the objects to be more precise for future simulation analysis

Applications

Re-act on exceptions happening in the real world

- exception occurs (e.g. crane breakdown)
- planner has to react very fast (e.g. define new crane split)
- test new strategy by fast simulation (Preview)
- potential bottle-necks will be shown
- planner will pro-actively (before they occur) optimise his strategy

Applications

Automated check of the current plan

- preview module is automatically started in predefined intervals
- predefined thresholds are compared to the simulation results
- productivity/efficiency lags may be identified in advance
- check of productivity figures (e.g. planned end of operation at the vessel)
- differences may be automatically sent to the planner/shown on the screen

Conclusions

Digital Twins at container terminals should be

- built by using the emulation model of a terminal
- connected to the real terminal by only listening to the TOS' and eqiupment's messages
- use the preview module (fast simulation) to predict the future behaviour
- Use industry standards for all communication

They combine

- the detailled behaviour of the emulators
- the current state of the terminal (by listening to the messages)
- the fast simulation of the preview module and thus may be used for improving the operational planning.

What happens next?

Digital Twin prototype for Busan terminal (10/2021)

Digital Twin installation for Hamburg terminal (3 years project)

- Predictive maintenance
- Process optimisation
- AI based evaluations of current and historical data

Come to our booth and grap your horse!

Holger Schuett Managing Director, Prof. Dr.-Ing. Holger.Schuett@akquinet.de www.akquinet.de/portconsulting

akquinet port consulting GmbH Barkhausenstrasse 2 27568 Bremerhaven Germany