on the safe side

SHIBATAFENDERTEAM GROUP

GERMANY | FRANCE | AMERICAS | ASIA

Technical Presentation - 11th Southern Asia Ports, Logistics & Shipping 2016, Colombo

Presented by: Y. Agari



on the safe side

CONTENT

- 1. SHIBATAFENDERTEAM GROUP
- 2. <u>TYPICAL FENDER DESIGN STEPS</u>
- 3. <u>REFERENCE PROJECTS</u>

on the safe side

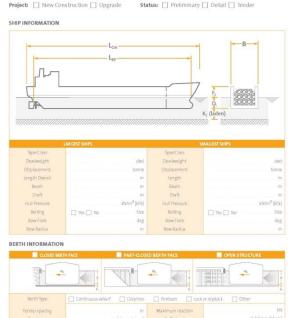
SHIBATAFENDERTEAM GROUP

<u>HEADQUARTERS</u>	Hamburg, Germany
<u>OFFICES</u>	Lansdowne, USA Paris, France Kuala Lumpur, Malaysia (from 01 st of June 2016)
PRODUCTION	Rubber fender production in Japan and Malaysia Own steel fabrication facilities in Germany Foam Filled Fender production in Germany and the USA
TURNOVER	~ 40 Million USD
DELIVERED PROJECTS	> 2.800 worldwide since 2006
PROJECT SIZES	> 5 Million USD / project> 200 fender systems / project
<u>ACHIEVEMENTS</u>	ISO 9001 ISO 14001 PIANC Type Approval for std. range

on the safe side

CASE STUDY

Typical steps for the design of a high performance, reliable and high quality fender system



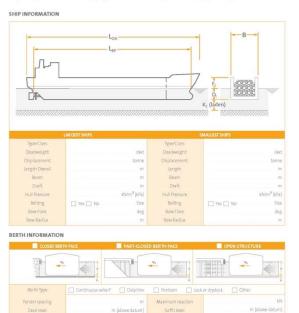
on the safe side

FIRST STEP – BASICS > COLLECTION OF DATA

- Reliable data is vital for a technically and economically sound fender design
- Use SFT questionnaire to collect all key data
- Discuss each individual fact in detail

Wind speed

on the safe side


FIRST STEP – BASICS > COLLECTION OF DATA

Most important data:

- Design vessel / Energy absorption
- Max. reaction force and hull pressure
- Berthing speed and angle
- Load cases, flat, belting, line / point loads
- Largest and smallest vessel
- Factor of Safety (FOS)
- Quay wall design

PROJECT REQ	UIREMENTS	
Ports		Accurate project information is needed to
Berth:		propose the most suitable fenders.
Client:		Please use the table below to describe the
Designer:		operating requirements with as much detail
Contractor		as possible

Project: New Construction Upgrade Status: Preliminary Detail Tender

on the safe side

FIRST STEP – BASICS > DETERMINATION OF APPLICABLE STANDARDS

- PIANC 2002: Guidelines for the Design of Fender-Systems
- British Standard 6349: Maritime Structures
- EAU 2004: Recommendations of the Committee for Waterfront Structures
- DIN 18800: Design and Construction of Structural Steelwork
- EUROCODE 3: Design and Construction of Structural Steelwork

on the safe side

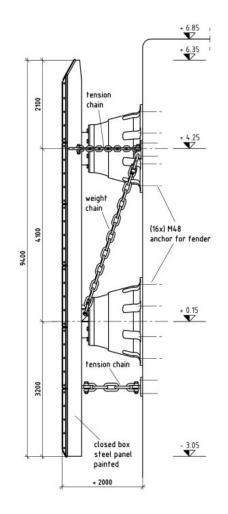
SECOND STEP – DESIGN > PREPARE ENERGY CALCULATIONS

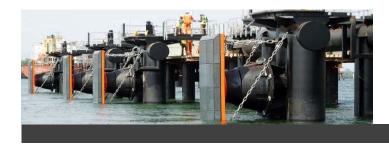
- Add carefully all available data
- Adjust factors accordingly
- Be aware of the most severe factor

Berthing velocity

$$E = \frac{1}{2}M * v^{2} * C_{e} * C_{m} * C_{s} * C_{c}$$

BA'	INFENDERTEAM ► on the safe side	22,419 Hambe	aus 1 b	Fax: + 49 (0 E-mail: info	0) 40 63 86 10-0 0) 40 63 86 10-180 o@shibata-fender.team shibata-fender.team			
oject	Fender for Lagos				Ref No:	02015		
Berth:	Berth 11 - 14		Prepared:		D.Polte	ð.		
ountry:	Nigeria		Date:	08-Okt-2015	Revision:	00		
etric			_					
	Design Method	PIANC WG33:	2002		1			
	Ship Type		HIP (Post-Panamax)		Fine line hull			
	Data Source	PIANC WG121			_			
	Primary Dimension	Displacement						
	Interpolation value	1250 Toble range: 42385						
	SHIP CHARACTERISTICS		C. db	y Laden	-			
	Operating Deadweight			DWT				
	Gross Tonnage		N/A					
	Twenty-foot Equivalent Unit		8,333					
	Cubic Capacity		N/A					
	Design Displacement	Mo	125.000					
	Length Overall	LOA	327,332					
	Length Between Perpendiculars	L _{B7}	312,332					
	Beam	В	43,267	m				
	Design Draft	D	13,000	m	Fully Loden			
	Design Freeboard	F	9,850	m				
	Block Coefficient	CB	0,694					
	BERTH & APPROACH							
	Structure Type		Closed face					
	Under Keel Clearance	Kc	10% of laden dra	ft	1,300	m		
	Point of Contact from Bow	×	Quarterpoint		25,0	% from bow		
	Eccentricity Calculation Method		Full Method					
	Added Mass Calculation Method		PIANC 2002					
	Seawater Density	Psw	1,025	t/m³				
	BERTHING FACTORS							
	Berthing Angle	α	5,00	deg	User defined value			
	Impact Point to Centre of Mass	R	81,025					
	Radius of Gyration	к	75,552	m				
	Velocity Vector Angle	Y	69,51	deg				
	Added Mass Factor	C _M	1,800					
	Eccentricity Factor	CE	0,531					
	Berth Configuration Factor	Cc	0,900					
	Hull Softness Factor	Cs	1,000					
	BERTHING VELOCITY							
	Velocity Table		PIANC WG33: 20	02				
	Approach Conditions		d) Good berthing					
	Berthing Velocity	V _B		mm/s				
	Normal Energy	EN	1.783,9	kNm				
	Factor of Safety	Fs	1,500					
	Abnormal Energy		2.675,9	kNm				
	AMIOI THAT LITE BY	EA	2.013,9	NINIII				

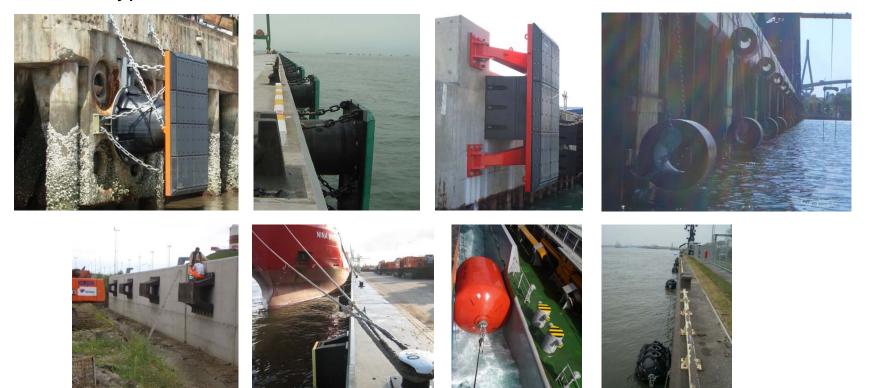



on the safe side

SECOND STEP – DESIGN > SELECTION OF THE RUBBER FENDER UNIT

Consideration of the following issues:

- Quay wall designs
 - Sheet pile wall
 - Combi wall (sheet pile section with piles, or beams)
 - Open / Semi-Open Pile Structure
 - Concrete deep-wall
 - Gravity structures (caissons, concrete blocks)
- Maximum stand-off distance
- Preferences of the consultant / client



on the safe side

SECOND STEP – DESIGN > SELECTION OF THE FENDER UNIT

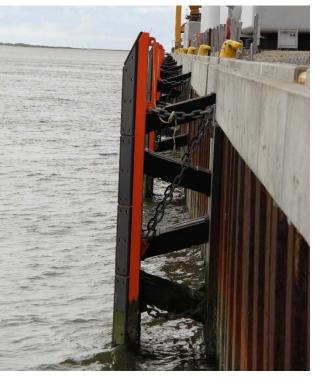
Standard types of fender units

on the safe side


SECOND STEP – DESIGN > SELECTION OF THE FENDER UNIT

SPC Cone Fender

CSS Cell Fender



on the safe side

SECOND STEP – DESIGN > SELECTION OF THE FENDER UNIT

FE Element Fender

V Fender (SX / SX-P)

on the safe side


SECOND STEP – DESIGN > SELECTION OF THE FENDER UNIT

Cylindrical Fender

Pneumatic Fender

on the safe side


SECOND STEP – DESIGN > SELECTION OF THE FENDER UNIT

Ocean Guard

Ocean Cushion

on the safe side

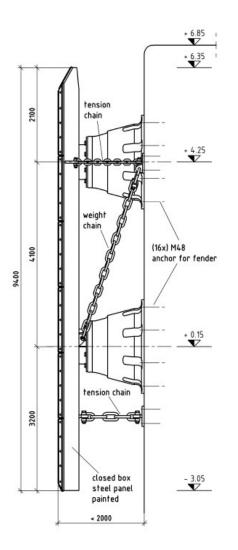

SECOND STEP – DESIGN SELECTION OF THE RUBBER FENDER UNIT

Design Criteria

Energy	=	2281 kNm
Reaction	=	< 3500 kN
Hull pressure	=	< 250 kN/m²
Berthing angle	=	6°
Stand-off	=	< 2000 mm

=> Tolerance and correction factor to be discussed

BA	on the safe side	22419 Hamb	laus 1 b	Fax: + 49 E-mail: in	(0) 40 63 86 10 0 (0) 40 63 86 10 1 90 fo@shibata-fender.team cv.shibata-fender.team		
ject:	Fender for Lagos				Ref No:	02015	
erth:	Berth 11 - 14		Prepared:		D.Polte	D.Polte	
ntry:	Nigeria		Date:	08-0kt-201	5 Revision:	00	
k							
	Design Method	PIANC WG33	: 2002				
	Ship Type	CONTAINERS	HIP (Post-Panamax)		Fine line hull		
	Data Source	PIANC WG12			ente noe nue		
	Primary Dimension	Displacement			-		
	Interpolation value		000 t				
	interpolation value	Table range: 4238					
		Table range: 4238	9,01 10 290828,01				
	SHIP CHARACTERISTICS						
	Loading		Full	y Laden			
	Operating Deadweight		N/A	DWT			
	Gross Tonnage		N/A	GT			
	Twenty-foot Equivalent Unit		8.333				
	Cubic Capacity		N/A				
	Design Displacement	Mo	125.000				
	Length Overall	Los	327,332				
	Length Between Perpendiculars	Leo	312,332				
	Beam	B	43,267				
	Design Draft	D	13,000		Fully Laden		
	Design Freeboard	E	9,850				
	Block Coefficient	Ce	0,694				
	BERTH & APPROACH						
	Structure Type		Closed face		_		
	Under Keel Clearance	K	10% of laden dra	.64	1,300	-	
	Point of Contact from Bow	Ke	Quarterpoint	iit		m % from bow	
		×	Full Method		25,0	% from bow	
	Eccentricity Calculation Method Added Mass Calculation Method		PIANC 2002		_		
	Seawater Density	Paw		t/ml			
	seawater Density	Pow	1,025	t/m²			
	BERTHING FACTORS						
	Berthing Angle	α	5,00		User defined value		
	Impact Point to Centre of Mass	R	81,025				
	Radius of Gyration	ĸ	75,552				
	Velocity Vector Angle	Ŷ	69,51	deg			
	Added Mass Factor	CM	1,800				
	Eccentricity Factor	C _e	0,531				
	Berth Configuration Factor	Cc	0,900				
	Hull Softness Factor	C5	1,000				
	BERTHING VELOCITY						
	Velocity Table		PIANC WG33: 20	02			
	Approach Conditions		d) Good berthing				
	Berthing Velocity	V _B		mm/s	_		
	Normal Energy	EN	1.783,9	kNm			
	Factor of Safety	Fs	1,500				
	Abnormal Energy	EA	2.675,9	kNim			

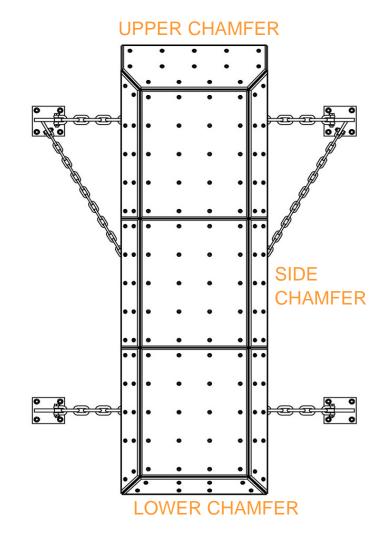

on the safe side


SECOND STEP – DESIGN SELECTION OF THE FENDER UNIT

Selected Fender

2 nos. SPC-1300H G2.3

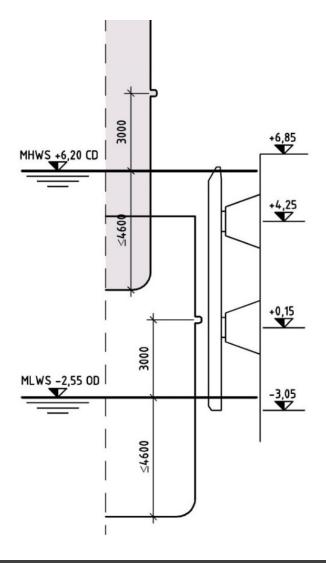
 $E = 1168 \text{ kNm} * 2 = \underline{2336 \text{ kNm}} (> \underline{2281})$ $R = 1705 \text{ kN} * 2 = \underline{3410 \text{ kN}} (< \underline{3500})$



on the safe side

SECOND STEP – DESIGN > PRELIMINARY DESIGN OF THE STEEL FENDER PANEL

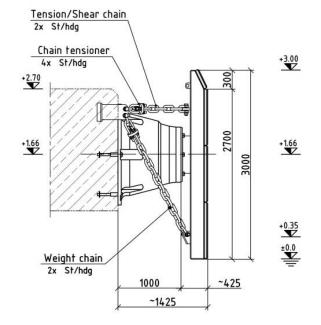
Why chamfers?



on the safe side

SECOND STEP – DESIGN PRELIMINARY DESIGN OF THE STEEL FENDER PANEL

Why chamfers?

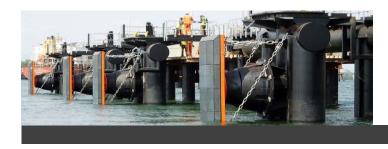

on the safe side

SECOND STEP – DESIGN SELECTION OF ACCESSORIES

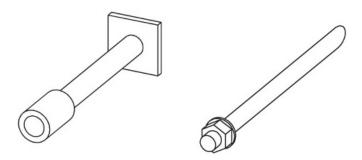
Chain and shackle assembly

- Weight chains
- Tension chains
- Shear chains
- Chain tensioner & shackles

=> Make sure you consider angles



© ShibataFenderTeam 2016



on the safe side

SECOND STEP – DESIGN > SELECTION OF ACCESSORIES

<u>Anchors</u>

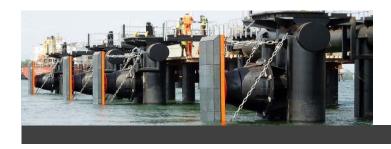
- Cast-in anchors (New concrete)
- Resin anchors (Existing concrete)



Chain fixation

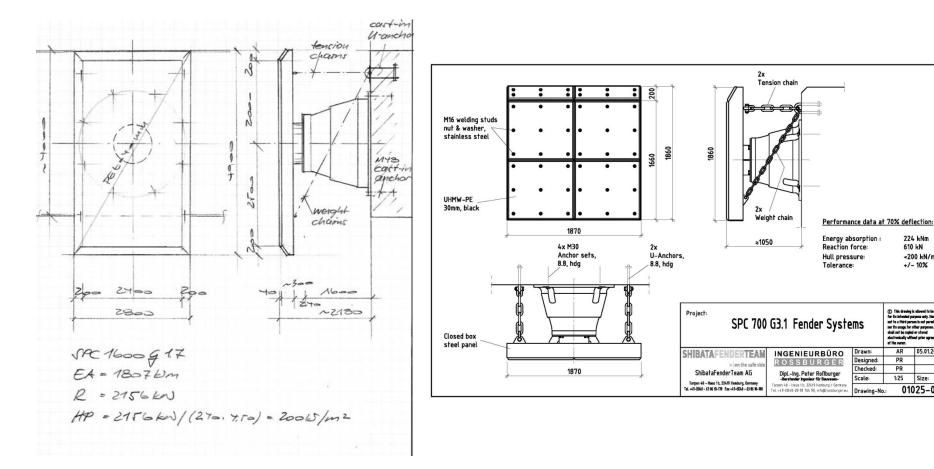
- U-anchors
- Brackets

on the safe side


SECOND STEP – DESIGN SELECTION OF ACCESSORIES

UHMW-PE Low Friction Plates

- Reclaimed (FQ Material, multicolour)
- Virgin material



on the safe side

SECOND STEP – DESIGN PREPARATION AND SUBMISSION OF SKETCHES/ DRAWINGS

224 kNm

610 kN

+/- 10%

Or This draving is allowed to be used for its intended purpose edity. Handing set to a third person is not permitted, nor its usage for other purposes. It shall not be copied or stored electronically utilised prior agreement of the owner.

1:25 Size: A4

01025-001

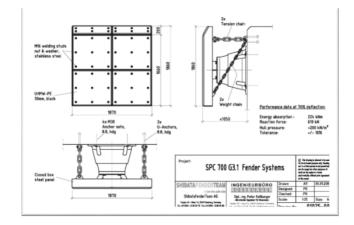
05.01.2009

AR

PR

PR

<200 kN/m²



on the safe side

THIRD STEP – FINALISATION

The final steps in preparing a high performance fender design:

- Detailed discussion/evaluation of the submitted proposal
- Review and consideration of stakeholders' comments
- Submission of final design and drawings (dwg/pdf files)
- Prepare specifications for high performance fenders

Fender Specification

PART 1 GENERAL

1.1 SUMMARY OF WORK

The work under this Section consists of fabricultin and delivery of new travine fender systems and hollards to be installed in Nabrzeze Olivyskie, Poland. The Couractor shall furnish all materials, labor, equipment, utilities, and incidental items necessary for the installation of marine fender systems as indicated on the project drawings and specifies herein.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred in the text by the basic designation only.

PIANC, Guidelines for the design of fender systems: 2002

EAU-E62 "Acceptance requirements for fender elastomers"

EUROCODE 3

DIN 18800-7:2008-11, Class D, execution and constructor's qualification Welding process (acc. to DIN EN ISO 4063): 135, semi automatic gas metal arc welding ; '83, Are stud welding with ceramic ferrule or shielding gas

1.3 SUBMITTALS

The Contractor shall submit the following in accordance with the General Conditions of the Contract. Note that approval of the submittals by the Engineer shall not be construed as relieving the Contractor from responsibility for

March 2016

on the safe side

THIRD STEP – FINALISATION

The final steps in preparing a high performance fender design:

Additional requirements to allow only highly qualified bidders to participate

- PIANC Certification
- Product Liability Insurance up to 5 Million USD
- Claim free record
- > Determination of panel weight range for specific project

on the safe side

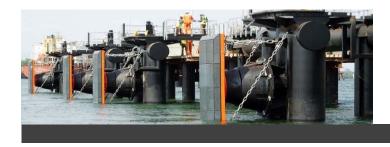
REFERENCE PROJECTS

GERMANY | FRANCE | AMERICAS | ASIA

on the safe side

> SPC/CSS Fender systems for Bulk Jetty - Sohar, Oman

CSS 3000H E/A = 7906 kNm


SPC 2000H E/A = 4242 kNm

on the safe side

> 200 nos. SPC Fender systems for Maasvlakte II, Rotterdam, The Netherlands

on the safe side

Double SPC Fender systems for Container Terminal – Port of Beirut, Lebanon

on the safe side

CSS Fender systems for Khalifa Port – Abu Dhabi, U.A.E

on the safe side

FE Element Fender systems with Belt Deflectors – Port of Sochi, Russia

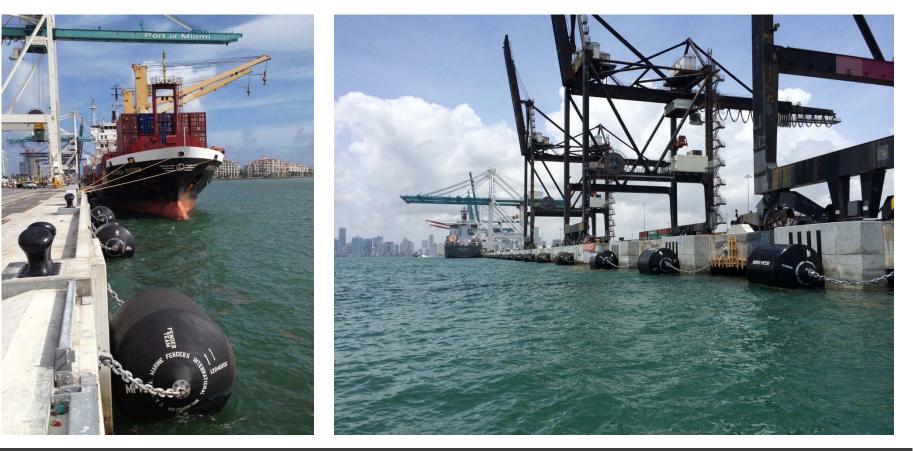


on the safe side

> PM Fender systems for Oil Terminal - Labuan, Malaysia



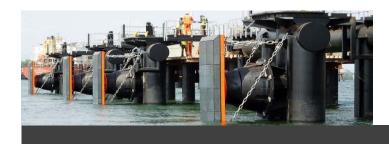
on the safe side


PM Fender systems for Ferry Terminal – Hirtshals, Denmark



on the safe side

60 pcs. 10' x 16' Ocean Guard Fenders for Container Terminal – Port of Miami, FL - USA



on the safe side

Cylindrical Fenders for Burchardkai LP2 – Hamburg, Germany

on the safe side

128 nos. SPC Fender systems for Tema Bulk Terminal – Tema, Ghana

on the safe side

> 24 nos. SPC Fender systems for CMIT – Cai Mep, Vietnam

on the safe side

> 16 nos. CSS Fender systems for IRPC Wf.3 – Thailand

on the safe side

Thank you for your attention!

For more information visit us at www.shibata-fender.team